Control of core MHD Instabilities by ECCD in ASDEX Upgrade

M. Maraschek (1), G. Gantenbein (2), S. Günter (1), F. Leuterer (1), A. Mück (1), A. Manini (1), H. Zohm (1), and the ASDEX Upgrade-Team (1)

(1) Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching, Germany
(2) Institut für Plasmaforschung, Pfaffenwaldring 31, D-70569, Stuttgart, Germany

- Introduction and motivation
- Sawtooth tailoring / avoidance with co / counter ECCD
- NTM stabilisation with co-ECCD
 - Deposition width scan
 - Modulated ECCD
 - Early application of ECCD
- FIR-NTMs and their triggering with ECCD
- Summary and future plans
• $q=1$, (flat or reversed in the centre in adv. scen.):
 sawteeth, fast particle driven fishbones, $(1/1)$-modes
 ⇒ sawtooth tailoring → avoidance of NTM trigger
 → burn control

• $q=4/3$:
 $(4/3)$ NTM, ideal $(4/3)$ modes during FIR-NTM
 ⇒ artificially trigger / avoid $(4/3)$ ⇒ FIR-NTM transition

• $q=3/2$:
 $(3/2)$ NTM
 ⇒ stabilisation and suppression of $(3/2)$-NTM

• $q=2$:
 $(2/1)$ NTM, $(2/1)$ classical current driven tearing modes
 ⇒ stabilisation and suppression of $(2/1)$-NTM

• control of current drive and deposition by B_t
 and toroidal and poloidal launching angle
typical "natural" time-development of an NTM

1: onset at $\beta_p, \text{onset} > \beta_p, \text{crit}$, + a seed-island, such as sawteeth
2: growth to saturated size, proportional to β_p, sat
 \rightarrow FIR-NTM phases at $\beta_N > 2.3$
 \rightarrow stabilisation experiments with ECCD
3: reduction of β_p by heating until β_p, crit is reached
4: $\beta_p = \beta_p, \text{crit}$, mode decouples from β_p
5: $\beta_p < \beta_p, \text{crit}$ for all times \Rightarrow mode decays away again

$W_{\text{sat}} \sim \beta_p$
$W_{\text{sat}}(\text{FIR, ECCD}) < \beta_p$

2005, M. Maraschek, IPP-Garching
Sawtooth tailoring with ECRH / ECCD

- co-ECCD:
 - stabilisation / full suppression outside inversion radius
 - destabilisation for on-axis
 → explainable with critical shear criterium: \(\frac{dq}{dr} \frac{r}{q} > (\frac{dq}{dr} \frac{r}{q})_{crit} \)

- pure heating (= 50% co and counter-ECCD):
 - similar behaviour as for co-ECCD, but less pronounced

- counter-ECCD:
 - stabilisation for on-axis
 - inverse behaviour
 - effect on (1/1) mode plays an additional role

→ impurity and He removal
→ burn control in the core

A.Mück, EPS2003, St.Petersburg
A.Mück, PPCF, 2005

\(P_{NBI} = 5\text{MW} \)
\(P_{ECCD} \leq 1.4\text{MW} \)
Optimization of sawtooth tailoring by varying the deposition width

• critical shear criterion can explain general behaviour

• clearest impact on τ_{st} for narrow deposition, especially for counter-ECCD
 ⇒ heating effect similar to co-ECCD
 ⇒ heating always present and stronger for broad deposition (> counter-ECCD)
 ⇒ j_{ECCD} or I_{ECCD}/d more important than total I_{ECCD}

• co-ECCD more efficient for sawtooth tailoring

A. Mück, PPCF, 2005
A. Manini, 32nd EPS2005, Tarragona

2005, M. Maraschek, IPP-Garching
High power NBI experiments: NTM avoidance at high $\beta_N = 2.8$

collaboration with T.P.Goodman, O.Sauter (CRPP)

#17238, counter-ECCD

- sawtooth tailoring less clear with higher $P_{\text{NBI}} \geq 10\text{MW}$
- off-axis co-ECCD \rightarrow no NTM during ECCD
 - no sawteeth, first large sawtooth triggers
- on-axis counter-ECCD \rightarrow fishbone triggered NTM during ECCD
 - (1/1) mode further outside, no big seed-island

\Rightarrow NTM avoidance achieved

higher $P_{\text{NBI}} = 10\text{MW}$ to reach NTM-threshold

$\beta_N \approx 2.8$ fixed by β_p feedback

A.Mück, EPS2003, St.Petersburg

2005, M.Maraschek, IPP-Garching
(3/2)-NTM stabilisation with narrow co-ECCD at reduced q95 at $\beta_N = 2.7$

- complete stabilisation at $\beta_N = 2.7$ with PECCD = 1MW and P$_{NBI}$ = 10MW, ITER relev. $q_{95} = 3.8$
 $\Rightarrow \beta_N / \text{PECCD} = 2.7/\text{MW}$

- β_N increase with more P$_{NBI}$ \Rightarrow even higher β_N achievable (re-excitation, Shafranov-shift)

2005, M.Maraschek, IPP-Garching
Influence of the deposition width on the (3/2)-NTM stabilisation

- **narrow deposition**: \(I / d = \text{current density maximal for} \ -5^\circ \ \text{(TORBEAM)} \)
 - full stabilisation with reduced \(\text{PECCD} / \text{PNBI} \) possible
 - higher \(\beta_N \) achievable at stabilisation (\(\beta_N / \text{PECCD}, \beta_N / (\text{PECCD/PNBI}) \))

- \(W < d \) reduces the stabilisation efficiency
 - \(\text{ECCD modulated by mode} \) (only O-point) might be required for ITER
 (further modulation experiments will be performed in 2006)

2005, M. Maraschek, IPP-Garching
Stabilisation efficiency as function of deposition width and driven current

- \(\beta N / \text{PECCD} \) variation reason for some scatter
- PECCD might be larger than required for stabilisation (\(\text{PECCD} > \text{PECCD, marginal} \))

- the figure of merit \(\beta N / \text{PECCD} \) gives the achievable \(\beta N \) at the stabilisation
- \(\beta N / \text{PECCD} \) "maximum" at maximal current peaking \(I/d \)

- similar improvement achieved for \((2/1)-\text{NTM}\)
(3/2)-NTM stabilisation with broad ECCD (19°) at early and late application

collaboration with A.Lazaros, E.Westerhof (FOM)

- 0.6s delay of mode onset, with identical fishbone activity
- mode amplitude comparable due to β-drop
- power requirement for subsequent stabilisation not resolved
- more peaked deposition I/d gave no clear answers

2005, M.Maraschek, IPP-Garching
Stabilisation of NTMs by non-modulated ECCD (intermediate width)

- Stabilisation also effective for non-modulated current drive for $d < W$, but:

 - for $W \leq d$ the required current increases significantly for non-modulated ECCD, compared to modulated ECCD

Q.Yu, PoP 2004
NTM stabilisation with modulated broad ECCD

- Reduction of island size, β_N recovery \Rightarrow phasing correct, but DC gives similar behaviour
- FIR-NTM phase at $\beta_N = 2.8$ \Rightarrow yet no clear answer possible, PECCD too small

2005, M.Maraschek, IPP-Garching
FIR-NTMs - a general NTM behaviour for $\beta_N > 2.3$

collaboration with D.F.Howell (UKAEA)

- common behaviour of FIR-NTM for $\beta_N > 2.3$ for JET and ASDEX Upgrade
 → stability of required coupled ideal (4/3)-mode (high ∇p, low ∇q ↔ infernal mode)

- ELMS have a similar effect at JET for $\beta_N > 1.9$ for low B_t, low q_{95}
- presence of $q=1$ surface modifies behaviour in improved H-mode
Triggering / suppressing of FIR-NTMs with ECCD

- triggering of ideal pressure driven (4/3) mode by q-flattening with ECCD
 (ideal: growth time, duration; ∇p, ∇q - dependence as for infernal modes)
- FIR behaviour of NTM at lower / higher β_N can be triggered / suppressed
- control of FIR-NTM feasible \iff complete stabilisation main target

2005, M. Maraschek, IPP-Garching
Present status and plans for the future

- feed-forward B_t - scan \rightarrow feedback stabilisation:
 1. realtime detection of (m/n) mode, its localisation and deposition of the ECCD
 2. feedback loop for the resonant surface ($\rho_{ECCD} = \rho_{NTM}$)
 3. steerable ECCD launchers and tunable gyrotrons
 - immediate reaction at still small island \rightarrow efficiency?
 - PNB increase to raise β_N \Rightarrow keep ECCD on q-surface without an NTM

- ultimate goal is not only removal, but avoidance of NTM
 \Rightarrow feedback loop on $\rho_{ECCD} = \rho(q)$ with equilibrium q-profile

 \rightarrow seed-island avoidance (such as sawteeth and/or fishbones)
 \rightarrow co-ECCD to "prevent" bootstrap hole at the resonant surface
 \rightarrow global tailoring of the j-profile (Δ' effect) or
 - the n_e-profile (bootstrap is driving term via ∇n_e)
 - to reduce drive for MHD mode
Detection of mode and ECCD on ECE (SENSOR)

- NTMs can be directly measured from high time and radial resolution ECE
- ECCD modulation (90%) → mode can be detected at the same time on ECE

⇒ input quantities for NTM feedback stabilisation available
- high time resolution
- realtime capabilities

A.Keller, EPS2003, St. Petersburg
The new ECRH system on ASDEX Upgrade (ACTOR)

- **power:** 4 MW, provided by 4 gyrotrons
- **pulse length:** 10 sec
- **frequency:**
 - 105 / 140 GHz as a 2-f-gyrotron
 - 105 / 117 / 127 / 140 GHz as a step tunable gyrotron
 - Change of frequency *between pulses*

- **launcher:** feedback controlled deposition via poloidal launching angle
toroidal angle can be set *between pulses*

- Heating and current drive, in particular for advanced tokamak regime
 - Suppression of tearing modes
 - Control of transport and pressure profile
Summary and outlook

- **local co / counter-ECCD** has been shown to be a powerful tool to control core MHD
 → narrow deposition layer, well controlable deposition and width

 → **sawtooth tailoring** at intermediate \(P_{\text{NBI}} \), deposition width, NTM avoidance at high \(P_{\text{NBI}} \)
 → **deposition width scan** ⇒ \(I/d, \beta \text{N}/PECCD \)
 ⇒ narrow deposition reduces required power (NTM,sawteeth)
 → **early ECCD** delays NTM onset
 → **modulation** of ECCD, no clear answer yet
 → trigger and suppress **FIR-NTM** ⇒ physical understanding

Outlook:

- application of **feedforward** technique:
 → **deposition width** and **modulation** experiments
 → extension for more general scenarios (ITER hybrid scenario)

- **realtime feedback control** with increased ECCD power and control capabilities will be applied in 2006 for stabilisation and avoidance
possible routes to influence NTMs by ECCD

sawtooth tailoring / avoidance of seed-island / NTM
- avoidance
- reduced size, trigger
- \(q = 1 \)
- early ECCD
- \(q = m/n \)
- [A.Mück, NF, 2005]

triggering transition to FIR-NTM
- reduce magn. shear for (4/3)-mode
- \(q = 4/3 \)
- [S.Günter, PPCF, 2004]

active stabilization of saturated island
- deposition width / island width \(\rightarrow \) modulation required for ITER?
- reduced requirements for early ECCD? \((W < W_{\text{sat}}) \)
- \(q = m/n \)
- [G.Gantenbein, PRL, 2000]
Dependence of the sawtooth frequency on the NBI selection

- variation of tangency radius governs the fast particle distribution from NBI
 ⇒ fast particle stabilisation

- variation in the particle energy between 100 keV and 60 keV has an additional impact

- significantly different deposition profiles for different sources

 ⇒ correction for sawtooth frequency required!
Sawtooth tailoring with ECRH / ECCD

collaboration with T.P.Goodman, O.Sauter (CRPP)

- **co-ECCD:**
 - stabilisation / full suppression outside inversion radius
 - destabilisation for on-axis
 → explainable with critical shear criterium:
 \[\frac{dq}{dr} \frac{r}{q} > \left(\frac{dq}{dr} \frac{r}{q}\right)_{\text{crit}}\]

- **pure heating** (= 50% co and counter-ECCD):
 - similar behaviour as for co-ECCD, but less pronounced

- **counter-ECCD:**
 - stabilisation for on-axis
 - effect on (1/1) mode plays an additional role
 → impurity and He removal
 → burn control in the core

\[
P_{\text{NBI}} = 5\text{MW} \\
P_{\text{ECCD}} \leq 1.4\text{MW}
\]

A.Mück, EPS2003, St.Petersburg
A.Mück, PPCF, 2005

2005, M.Maraschek, IPP-Garching
Modelling the effect of co-ECCD / counter-ECCD / pure ECRH on sawteeth

- Modelling of the sawtooth period for pure (!) ECCD and ECRH
- Sweep of the deposition layer over the q=1 surface

- Heating effect similar to co-ECCD with comparable size and broader effect
- Small counter-ECCD (broad dep.) effect can be understood in the experiment

C. Angioni, NF 43 (2003), p.455

2005, M. Maraschek, IPP-Garching
Power dependence of the sawtooth behaviour

- variation of (1/1) ampl. with constant sawteeth
- (1/1) mode survives
- role of the (1/1) mode

2005, M. Maraschek, IPP-Garching
(3/2)-NTM stabilisation with narrow co-ECCD at $\beta_N = 2.6$

- complete stabilisation at $\beta_N = 2.6$ with $P_{ECCD} = 1\text{MW}$ and $P_{NBI} = 12.5\text{MW}$
 \[\Rightarrow \beta_N / P_{ECCD} = 2.6/\text{MW} \]

- β_N increase with more P_{NBI} not considered \(\Rightarrow\) even higher β_N achievable (re-excitation)
B_t = 2.0T, I_p = 1.1MA, higher β_N (narrow ECCD deposition) at more ITER relev. q_{95}, but no complete stabilisation achieved, due to lower T_e and less driven current.
(2/1)-NTM stabilisation with narrow co-ECCD at $\beta_N = 2.3$

- stabilisation at $\beta_N = 2.3$ [1.9] with $PECCD = 1.4$MW [1.9MW], $P_{NBI} = 10$MW [6.25MW]
 \[\Rightarrow \quad \beta_N / PECCD = 1.64/MW \] [1.0/MW]
 \[\Rightarrow \quad \text{stabilisation of the (2/1) NTM requires more power (} \beta_{p,marg}, \text{ less current drive)} \]

- faster unlocking of (2/1)-NTM \[\Rightarrow \quad \text{injection in the O-point of the locked mode works} \]
stabilisation efficiency as function of deposition width, driven current, ...

- q95 variation reason for some scatter
- for complete stabilisation PECCD might be too large (PECCD > PECCD, marginal, IECCD > IECCD, marginal)
- the figure of merit
 \[\beta_N / \text{PECCD} \]
 gives the achievable β_N at the stabilisation
- β_N / PECCD "maximum" at maximal I/d
Nonlinear modelling allows separation of different terms

- typically 1-2% of plasma current driven at resonant surface (Fokker-Planck-Code)

- Modelling of DC co-ECCD with scan of deposition and Fourier analysis:

 → helical current ((3,2)-comp.) and Δ'-effect ((0,0)-comp.) are of similar importance

 → complete stabilisation only due to synergy of both effects

2005, M. Maraschek, IPP-Garching
Stabilization of neoclassical modes by non-modulated current drive

Non-modulated co-ECCD (AUG)

Non-modulated counter-ECCD (AUG)

Numerical modelling

Stabilisation due to synergy of helical current and change in Δ'

2005, M. Maraschek, IPP-Garching
Stabilisation of NTMs by non-modulated ECCD (intermediate width)

- modulated ECCD in O-point: $P_{\text{ECCD}}/P_{\text{NI}} \approx 4-8\%$, 40% β_N recovery with mode reduction
- stabilisation also effective for non-modulated current drive for $d < W$

H. Zohm et al. NF 39 (1999)

2005, M. Maraschek, IPP-Garching
Stabilisation of NTMs by non-modulated ECCD (intermediate width)

- modulated ECCD in O-point: PECCD/PNI \(\approx \) 4-8%, 40% \(\beta_N \) recovery with mode reduction
- stabilisation also effective for non-modulated current drive for \(d < W \)

\[\rightarrow \] clearly highest reduction rate at early modulated phase

2005, M. Maraschek, IPP-Garching
• correct phase adjustment for modulated deposition from the equilibrium

• ECCD is capable for modulation with \(f = 30 \text{ kHz} \)

• requirement for ITER for \(W > d \)?
FIR-NTMs by nonlinear mode coupling with \((m+1,n+1)\) modes and \((1,1)\) mode

- presence of both \((m+1/n+1)\) mode and \((1/1)\) mode required
- phase locked resonance required

A.Gude, Nucl. Fusion 42 (2002) 833
Triggering / suppressing of FIR-NTMs with ECCD

- triggering of ideal pressure driven (4/3) mode by q-flattening with ECCD
- FIR behaviour of NTM at lower / higher β_N can be triggered / suppressed
General idea of a feedback loop for NTM stabilisation

- NTM detection
 - mode numbers
 - ECCD localisation
 - mode localisation
 - localisation from calibrated / improved equilibrium
 - launch angle
 - launch angle of ECCD
 - mode phase
 - ECCD and loop on
 - first guess
 - ECCD and loop off
 - NTM amplitude = 0, \(\beta_N \text{ - max, } \omega_{MHD} \text{ = max, } \ldots \)

- \(\rho_{NTM} = \rho_{ECCD} \)
- \(\rho_{ECCD} \) and loop on
- ECCD and loop off
- ECCD and loop on
- launch angle
 - \(\leftrightarrow R_{plasma}, B_t \text{ at DIII-D} \)
- ECCD deposition meas.
 - by ECE
- TORBEAM calculations for "first guess" for new scenarios
- ECCD modulation available
 - trigger
Newly developed tools for the stabilisation (SENSOR)

- detection of odd n ((2/1)-NTM, but (1/1) also) and even n ((3/2)-NTM)
 ⇒ diagnostic upgrade provides realtime n=1, n=2, n=3 detection

- detection of localisation of the mode and ECCD via realtime ECE / SXR