Plasma heating and core mode reduction during NBI in MST

J. K. Anderson¹, A. F. Almagri¹, V. V. Belykh², B.E. Chapman¹, V.I. Davydenko², P. Deichuli², D.J. Den Hartog¹, S. Eilerman¹, G. Fiksel¹,³, C.B. Forest¹, A.A. Ivanov², J. Kolinear¹, D. Liu¹, M.D. Nornberg¹, S. V. Polosatkin², J. S. Sarff¹, N. Stupishin², and J. Waksman¹

¹Department of Physics, University of Wisconsin-Madison, WI, USA
²Budker Institute of Nuclear Physics, Novosibirsk, Russia
³Laboratory for Laser Energetics, University of Rochester, NY, USA

15th IEA International RFP Workshop
October 10-12, 2011, Madison, Wisconsin USA
New 1 MW Neutral Beam Injector explores new physics

- Tangential injection to maximize beam deposition
- Co-current or counter-current injection by reversing I_p
- Fast ion diagnostics:
 - Scintillator-based neutron detector
 - Neutron emission is dominated by beam-target reactions for certain plasma density range
 - Advanced neutral particle analyzer (ANPA)
 - Simultaneously measure charge exchange H and D neutrals
 - 10 channels per mass species
 - E: 1-30 keV, ΔE:2-3 keV, Δt: \sim0.1 ms

<table>
<thead>
<tr>
<th>NBI Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>25 keV</td>
</tr>
<tr>
<td>Beam power</td>
<td>1 MW</td>
</tr>
<tr>
<td>Pulse length</td>
<td>20 ms</td>
</tr>
<tr>
<td>Composition</td>
<td>95-97% H, 3-5% D</td>
</tr>
<tr>
<td>Energy fraction (E:E/2E/3:E/18)</td>
<td>86%:10%:2%:2%</td>
</tr>
</tbody>
</table>
NBI Heating of RFP plasma
- Measureable effect in PPCD plasma
- Requires careful accounting of consistent χ_e, P_Ω profile evolution

Reduction of core mode amplitude
- Unexpected result; studying possible mechanisms of stabilization
 - Current drive effect?
 - Enhanced flow shear?
 - Fast particle stabilization?

Interesting observations of NBI in PPCD

Summary
Neutral Beam Injection creates large fast ion population in MST.

- NPA, neutron measurements confirm significant population.
- Are they confined?
- Do they thermalize?

Interesting note:

\(\rho_{fi}/a \sim \) same for

- 25 keV H in MST
- D-T \(\alpha \) (3.5MeV) in 8 MA, \(a = 1\text{ m RFP} \)
Net power ~800 kW; shine through significant, low n_e

NBI born fast D$^+$ neutron flux

Rapid T_e change without NBI

Magnetic fluctuations suppressed during PPCD

NBI only during early portion of PPCD

200kA PPCD is a good NBI target discharge for NBI heating
PPCD plasma is rapidly evolving; careful power balance is needed to confirm NBI heating

- Core T_e increases ~ 200 eV to ~ 800 eV
- $T_e(r)$ profiles measured at 1 kHz, Thomson scattering
- Non-NBI discharges used to determine consistent set of P_Ω, χ_e profiles

![Graph showing $T_e(0)$ vs Time](image.png)

$T_e(0)$ 200kA PPCD

(No NBI)
Te profile evolution matched by solution to differential equation

- Time dependent temperature profile calculated from initial \(T_e(r) \) (10 msec)
- Matches non-NBI case (by definition)

Modeled \(T_e = T_e(10 \text{ msec}) + \frac{\partial}{\partial t} \left(\frac{3}{2} nT \right) = P_\Omega - P_{e \rightarrow i} - An\chi_e \nabla T \)
NBI into PPCD shows enhanced temperature increase

- Assume NBI does not affect Xe, Zeff
- Adding NBI heat source reproduces data
- Fast ion heating model:

 \[
 \frac{\partial}{\partial t} \left(\frac{3}{2} nT \right) = P_\Omega - P_{e\rightarrow i} - An\chi_e \nabla T
 \]

 Modeled \(T_e = T_e(10 \text{ msec}) + \frac{\partial}{\partial t} \left(\frac{3}{2} nT \right) \)

 Modeled \(T_e = T_e(10 \text{ msec}) + \frac{\partial}{\partial t} \left(\frac{3}{2} nT \right) = P_\Omega + P_{NBI} - P_{e\rightarrow i} - n\chi_e \nabla T \)

- TRANSP estimate of beam ionization
- Fast ions:
 * are radially confined.
 * slow down classically.
 * vanish after losing 1/e of energy

![Graph showing temperature profile with NBI and without NBI]
Central temperature change reproduced throughout PPCD

- $\Delta T_e(0) \sim 100$ eV
- Simple, classical model reproduces temporal evolution of core ΔT_e
- NBI heating effect extends beyond beam turn-off
 (Fast ions still confined, are slowing)
- Model matches data after end of PPCD
 Te, ΔT_e decreasing due to enhanced χ_e
NBI Heating of RFP plasma
 • Measureable effect in PPCD plasma
 • Requires careful accounting of consistent χ_e, P_Ω profile evolution

Reduction of core mode amplitude
 • Unexpected result; studying possible mechanisms of stabilization
 • Current drive effect?
 • Enhanced flow shear?
 • Fast particle stabilization?

Interesting observations of NBI in PPCD

Summary
NBI suppresses core mode; does not affect outer modes

- Example 1: 200 kA PPCD
 - $q(0) \sim 0.18$
 - $n = 6$ mode reduced
 - $n \geq 7$ unaffected.
NBI suppresses core mode; does not affect outer modes

- Example 1: 200 kA PPCD
 - $q(0) \sim 0.18$
 - $n = 6$ mode reduced
 - $n \geq 7$ unaffected.

- Example 2: Shallow reversed standard plasma.
 - $q(0) \sim 0.21$
 - $n = 5$ mode reduced
 - $n \geq 6$ unaffected.

- Mechanism of mode stabilization not yet identified
 - Altered J_\parallel profile?
 - Enhanced flow shear?
 - Stabilization due to fast ions at island?
Expected NBI current drive is weak but may affect resonance condition.

TRANSP predicts $J_{NBI} < 10\%$ of background

Enhanced toroidal current not observed.
(Not likely stabilizing)

Altered profile which conserves Ip difficult to measure
NBI applies significant torque; alters flow, flow shear.

Enhanced flow shear:
Can lead to window of stability for global modes
M.S. Chu et. al. Phys Plasmas 1995

May have destabilizing effect on m=1 tearing in RFP.
Gatto, Terry, Hegna Nuc. Fusion 2002
Fast particles in vicinity of rational surface could be stabilizing influence.

Flow pattern of island dictated by electric field.

\[j_\perp = -en_e \frac{E \times B}{B^2} + en_i \frac{E \times B}{B^2} = 0 \]
\[-en_e + en_i = 0 \]

No net current when e-, bulk ions are quasineutral

Gyro-motion of fast ions (if on same length scale as island) nulls current from those particles.

\[j_\perp = -en_e \frac{E \times B}{B^2} + en_i \frac{E \times B}{B^2} + en_{fi} \frac{E \times B}{B^2} \neq 0 \]
\[-en_e + en_i + en_{fi} = 0 \]

Net current possible with fast ions.
Fast ion stabilization can be explored by moving the resonant surface away from fast particles.

- Imposing boundary condition on $B_\phi(a)$ affects $q(0)$, location of $q=1/5$, $q = 1/6$
- Shown here: Six equilibria from NBI experiments.
Fast ion stabilization can be explored by moving the resonant surface away from fast particles.

- Imposing boundary condition on $B_\phi(a)$ affects $q(0)$, location of $q=1/5$, $q = 1/6$
- Shown here: Six equilibria from NBI experiments.
- Fast ion deposition presumed to be fixed
Substantial core mode reduction is observed when rational surface overlaps fast ion population.

- Time-averaged mode amplitude reduction computed for duration of NBI pulse.
- Fast ion Larmor radius ~ 5-7 cm.
- Fast ion deposition presumed fixed over varying equilibria.
Substantial core mode reduction is observed when rational surface overlaps fast ion population.

- Time-averaged mode amplitude reduction computed for duration of NBI pulse.
- Fast ion Larmor radius ~ 5-7 cm.
- Fast ion deposition presumed fixed over varying equilibria

Several experimental caveats:
- fast ion density modeling is limited.
- large uncertainty in core q value
- plasma becomes more resistive for F > 0
NBI Heating of RFP plasma
- Measureable effect in PPCD plasma
- Requires careful accounting of consistent χ_e, P_Ω profile evolution

Reduction of core mode amplitude
- Unexpected result; studying possible mechanisms of stabilization
 - Current drive effect?
 - Enhanced flow shear?
 - Fast particle stabilization?

Interesting observations of NBI in PPCD

Summary
Case (b): “Normal” 500kA PPCD: Neutron flux keeps increasing after NB turn-off → due to bulk ion density profile evolving?

Case (c): High Ti 550kA PPCD. Large thermal neutron flux; no significant neutron flux increase during NBI → Large pitch angle scattering due to hollow impurity profile?
Summary

- NBI heating of enhanced confinement MST plasma is observed.
 - Simple, classical model for fast ion behavior matches data

- Strong stabilizing effect on the core-most tearing mode
 - $n = 5$ reduced for plasmas with $q(0) > 0.2$
 - $n = 6$ reduced in PPCD plasmas with $q(0) \sim 0.18$
 - No reduction observed in standard $F = -0.2$ plasma, $q(0) \sim 0.19$

- Other tearing modes are unaffected

- Mechanism of mode stabilization not yet identified. Considered so far:
 - Altered $J_{||}$ profile affects tearing mode stability
 - Altered $J_{||}$ profile removes core mode resonance condition.
 - Enhanced flow shear can affect stability.
 - Stabilization due to fast ions at tearing mode layer by finite Larmor radius effect