Outline

- Motivation
- Microinstabilities
- Gyrokinetics
- Results
- Summary and Future Work
Motivation

Microinstabilities are known to make significant contributions to turbulence and transport in tokamaks.

In RFPs, the focus has been on large scale (global) tearing modes.

Key Question - Do microinstabilities exist in the RFP (particularly in the outer region), and if so, what are their characteristics?
microinstabilities - perpendicular wavelengths on the order of a gyroradius

- Electrostatic (Zero Beta)
 - ITG/ETG (Ion/Electron Temperature Gradient)
 - TEM (Trapped Electron Mode)
- Electromagnetic (Finite Beta)
 - KBM (Kinetic Ballooning Mode) - ion frequency mode
 - Microtearing Mode - electron frequency mode
 - $\Delta' < 0$ for k_θ large (no current gradient drive)
 - driven by electron temperature gradient
Gyrokinetics and the GYRO\(^1\) code

- GYRO solves the gyrokinetic-Maxwell system of equations in a flux-tube domain
- Kinetic equation reduced to 5D by averaging over the gyrophase angle
- Linear (growth rates) and nonlinear (transport levels)
- Poloidal wavenumber \(k_\theta = \frac{nq(r)}{r} \)

RFP Modifications

Equilibrium - Toroidal Bessel Function Model 2

$$ B_\theta(r) = B_0 J_1 \left(\frac{2\Theta r}{a} \right) \frac{1}{1+(r/R_0)\cos(\theta)}, \quad B_\phi(r) = B_0 J_0 \left(\frac{2\Theta r}{a} \right) \frac{1}{1+(r/R_0)\cos(\theta)} $$

$$ \Theta = \frac{\langle B_\theta \rangle_{\text{wall}}}{\langle B_\phi \rangle_{\text{vol}}}, \text{ pinch parameter} $$

Modifications are primarily due to geometric changes in operators - curvature, diamagnetic, parallel transit

$$ \hat{b} \cdot \nabla = \frac{1}{qR_0} \frac{\partial}{\partial \theta} \rightarrow \frac{z}{qR_0} \frac{\partial}{\partial \theta} $$

$$ z = \frac{1}{\sqrt{1+\left(\frac{\epsilon}{q} \right)^{1/2}}} $$

s-α equilibrium not adequate to describe RFP growth rates

2V. Tangri, P.W. Terry, and R.E. Waltz (2011)
Tokamak Results - β_e stabilizes ITG, destabilizes KBM

Candy and Waltz (2003)

$R_0/a = 3.0, R_0/L_n = 3.0$
$R_0/L_T = 9.0, q = 2.0, s = 1.0$

Pueschel, Kammerer, and Jenko (2008)

$R_0/a = 2.78, R_0/L_n = 2.22$
$R_0/L_T = 6.89, q = 1.4, s = 0.786$
$k_\theta \rho_s = 0.372$

$r/a = 0.5, \; T_e/T_i = 2.5, \; a/L_n = 0.58, \; a/L_T = 5.0, \; \Theta = 1.35$
Low β_e modes show ITG eigenmode structure

$$k_\theta \rho_s = 0.372, \beta_e = 0$$
canonical ballooning parity
θ_*: extended ballooning angle
ITG beta suppression

- Hirose (2000) did an analysis of finite beta ITG suppression in tokamak geometry
- Concluded that ITG is suppressed by \(\alpha_e = -q^2 R \frac{d\beta_e}{dr} \), the electron ballooning parameter
- Modifying these results yields an estimate of when to expect it in the RFP
- Important difference: \(L_B : qR(\text{tokamak}) \rightarrow a(\text{RFP}) \)

Stabilization Criterion

\[
\alpha_e \geq \frac{1+\eta_e}{3} \frac{\tau^2}{(\tau+2\bar{\varepsilon}_n)(\tau+1)+\tau^2\eta_e}
\]

\[
\eta_e = \frac{L_n}{L_{Te}} = 8, \quad \bar{\varepsilon}_n = \frac{L_n}{L_B} = 1, \quad \tau = \frac{T_e}{T_i} = 2.5, \quad \epsilon = 1/3, \quad q = 0.2
\]

Stabilization occurs above \(0.285 \rightarrow \beta_{e,\text{crit}} \sim 0.07 \)
High β_e modes show Microtearing eigenmode structure

$$k_\theta \rho_s = 0.372, \quad \beta_e = 0.09$$
Shifting peak of instability growth rate

Microtearing strong across range of scales at high beta.

Next: focus on microtearing at $\beta_e = 0.09$ and $k_\theta \rho_s = 1.488$
Parameter Dependence - Electron Temperature Gradient

\[k_\theta \rho_s = 1.488, \quad \beta_e = 0.09 \]

threshold value is \(a/L_{Te} \sim 3.5 \)
Parameter Dependence - Collisionality

Pitch-angle-scattering Lorentz operator

\[C(f_\sigma) = \frac{\nu_{\sigma}(\epsilon)}{2} \frac{\partial}{\partial \xi} (1 - \xi^2) \frac{\partial f_\sigma}{\partial \xi} \]

Previous analytic work (in tokamaks) suggested that microt earing should be stable for collisionless plasma.
Microtearing stability sensitive to sign of shear?

Connor, Cowley, and Hastie (1990) - "Micro-tearing stability in Tokamaks"

\[\dot{\gamma} = -C_1 \lambda \ln(1/\lambda) \eta_e^2 + C_2 \eta_e \sqrt{\frac{\epsilon \nu_e}{\omega_e}} - C_3 \eta_e^2 \frac{\nu_e}{\omega_e} - C_4 \Lambda \left(\frac{\omega_e}{\nu_e} \right) \] (1)

\[C_4 = \frac{1}{\sqrt{\pi}} \frac{(1 + \tau)(1 + \frac{\eta_e}{2})}{1 + (1 + \frac{\eta_e}{2}) \tau} \] (2)

\[\Lambda = \frac{4 \epsilon^{3/2}}{\beta_e} \frac{L_n^2}{R^2 q^2} s \nu_e, \quad s = \frac{rq'}{q}, \quad \nu_e = \frac{\nu_e R q}{\epsilon^{3/2} v_{Te}} \] (3)

Role of negative shear in instability drive?

Caveat - microtearing sometimes observed in tokamak simulations at low collisionality
Linear gyrokinetic simulations were performed using RFP equilibrium. At low electron beta, ITG is the dominant mode for $k_\theta \rho_s < 1$. ITG is suppressed by finite beta, in agreement with expectations. Microtearing becomes dominant around $\beta_e \sim 4.5\%$. The microtearing mode is driven by electron temperature gradient and seems to persist even at low collisionality.
Future Work

- Continue analysis of collisionless microtearing mode
- Use the GENE code for cross-checking and comparisons
- Nonlinear simulations for turbulence and transport levels
- Comparison with measurements - HIBP, Fast Thomson, FIR, probes
- \tilde{n}, \tilde{T}, $\tilde{\phi}$, \tilde{B} fluctuations and correlation functions