Measurement, modeling, and analysis of the neutral density profile in MST

Scott Eilerman
15th International IEA RFP Workshop
Madison, WI
October 11, 2011

Jay Anderson, Daniel Den Hartog, Santhosh Kumar, Deyong Liu, and the MST team
University of Madison-Wisconsin

Fulvio Auriemma, Rita Lorenzini
Consorzio RFX
Neutral density profiles necessary for plasma analysis

• Neutral particles interact with the plasma in two important ways:
 • Through ionization, serve as the plasma’s fuel
 • Through charge exchange, can act as a loss mechanism for charged particles

• Neutral density profile $n_0(R,Z)$ is important for analysis of:
 • Electron source term
 $$ S = n_0 n_e \langle \sigma v \rangle_{ionization} $$
 • Particle confinement time
 $$ \tau_p = \frac{\int n_e \, dV}{\int \left(S - \frac{\partial n_e}{\partial t} \right) \, dV} $$
 • Energetic ion charge-exchange rates
 • CHERS data (fractional abundances of impurity charge states)
 • NPA data (signal is a result of charge-exchange processes)
Outline

• Measurements
 • D_α emission detector array

• Modeling
 • NENE Monte Carlo neutral transport modeling
 • Fitting to data
 • Neutral sourcing choices

• Analysis
 • Consistency with CHERS predictions
 • Fast ion charge exchange losses
 • NPA data analysis
Neutral density derived from D_α line emission measurements

- 656.1 nm line emission generated from neutral/electron collisions

$$\gamma_{D_\alpha} = n_0 n_e \langle \sigma v \rangle_{\text{excitation}}$$

- Calibrated filtered photodiode array provides 16 line-integrated measurements
NENE models neutral transport through MST plasma

- NENE is a Monte Carlo code that simulates neutral particle transport through a plasma
 - Sources a neutral at plasma edge
 - Identifies mean free path and probability of ionization based on input plasma conditions
 - Tracks particle until it scatters (CX), ionizes, or hits a wall

- Written by F. Auriemma and R. Lorenzini for RFX and adapted for MST

NENE

Wall materials

Measured n_e, T_e, T_i

Neutral source

Monte-Carlo particle tracking
Atomic Physics
TRIM wall interactions

$\rightarrow n_0(R,Z)$
NENE used with D_α emission to generate n_0 profile

Wall materials → Monte-Carlo particle tracking
Measured n_e, T_e, T_i → Atomic Physics
Neutral source → TRIM wall interactions

→ $n_0(R,Z)$

Create 3 profiles with different neutral sources

Map to flux coordinates

Analysis routine

Mix profiles with varying coefficients

Calculate D_α emission

Minimize χ^2 against D_α detector data

Minimum found

Generate solution $n_0(R,Z)$

Calculate source term, τ_p, etc.

\[n_0(R, Z) = \sum_{i=1}^{3} a_i \ n_{0,i}(R, Z) \]
Multiple NENE models used as basis functions

- We use 3 NENE models with different neutral source options as basis functions to fit our observed D_α emission

$$n_0(R, Z) = \sum_{i=1}^{3} a_i \, n_{0,i}(R, Z)$$

Proton/wall collisions

- No profile
- D_α profile
- Line-integrated D_α emission

Limiter emission

- No profile
- D_α profile
- Line-integrated D_α emission

50ev monoenergetic

- No profile
- D_α profile
- Line-integrated D_α emission

Solution

- No profile
- D_α profile
- Line-integrated D_α emission
Core $n_0 \sim 10^9$ cm$^{-3}$ in typical MST discharges

<table>
<thead>
<tr>
<th>Plasma</th>
<th># shots</th>
<th>Core n_0 (cm$^{-3}$)</th>
<th>Edge n_0 (cm$^{-3}$)</th>
<th>τ_p (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard F=0</td>
<td>116</td>
<td>2.3×10^9</td>
<td>5.6×10^{11}</td>
<td>1.9</td>
</tr>
<tr>
<td>Standard F= -0.2</td>
<td>95</td>
<td>2.2×10^9</td>
<td>6.2×10^{11}</td>
<td>1.6</td>
</tr>
<tr>
<td>PPCD</td>
<td>63</td>
<td>6.5×10^8</td>
<td>1.3×10^{11}</td>
<td>17.3</td>
</tr>
</tbody>
</table>

F=0

Z=0 neutral density

10^{12}

10^{11}

10^{10}

10^{9}

10^{8}

r_{minor} (m)

F=-0.2

Z=0 neutral density

PPCD

Z=0 neutral density
Neutral energy choice affects core density

- As you increase source neutral energy, models better match data, but core \(n_0 \) rises and results become unrealistic.
- Best profile may differ based on expected results.
- 50 ev used as default.
Time evolution illustrates neutral sourcing during sawteeth

- NENE models equilibrium at a single time point
- Series of equilibria with $\Delta t = 0.25$ ms used to study time behavior
- n_0 increases at sawteeth due to plasma/wall interaction
- n_0 increases during gas puffing and current ramp-down
Profile time evolution – away from sawtooth

Plasma current

Gas Puffing

Core D_α

Core $n_0 \left(10^{10} \text{ cm}^{-3}\right)$

D_α emission

n_0 profile
Profile time evolution – at sawtooth

Plasma current

Gas Puffing

Core D_α

Core $n_0 \left(10^{10} \text{ cm}^{-3}\right)$

D_α emission

n_0 profile
Profile time evolution – end of shot

Plasma current

Gas Puffing

Core D_α

Core n_0 (10^{10} cm^{-3})

D_α emission

n_0 profile
Neutral density critical to CHERS analysis

- n_0 is important for determining fractional abundances of impurity ions
- n_0 can be predicted based on CHERS measurements of multiple impurity charge states

r/a vs. $N_{\text{index}} / N_{\text{total}}$

- Core $n_0 = 10^9$ cm$^{-3}$
- Core $n_0 = 10^{10}$ cm$^{-3}$
Results consistent with CHERS n_0 predictions

- CHERS predicts n_0 at several radial locations.

- To match predictions, a 250 ev neutral energy profile was necessary to increase core n_0.
 - Plasma above is 520 kA PPCD, so some increase in neutral energy might be expected.
Neutral charge exchange plays a role in NBI ion confinement

- Fast ions can be injected with the 25keV NBI
- Fast ion loss rates can be inferred from neutron signal decay rate and knowledge of slowing-down processes

\[\Gamma_n \propto \int_V n_f i n_i \langle \sigma_d d(E_f)\rangle v_{fi} dV \]

\[\frac{1}{\tau_n} \approx \frac{1}{\tau_{fi}} + \frac{1}{\tau_{cl}} \]

- One loss mechanism for fast ions is charge exchange with neutrals

\[- \frac{dn_{fi}}{dt} = n_f i n_0 \langle \sigma v \rangle_{cx} \quad \Rightarrow \quad \tau_{cx} = \frac{1}{n_0 \langle \sigma v \rangle_{cx}} \]
Neutral charge exchange plays a role in NBI ion confinement

- TRANSP models predict charge exchange is the primary loss mechanism for NBI ions in MST

- In extreme case, τ_{fi} becomes a lower bound on τ_{cx}

$$\tau_{cx} = \frac{1}{n_0 \langle \sigma v \rangle_{cx}} \quad \frac{1}{\tau_{fi}} \simeq \frac{1}{\tau_{cx}} + \frac{1}{\tau_{other}} \quad \therefore \quad \tau_{fi} \leq \tau_{cx}$$

- Large error bars (not shown), but order of magnitude agreement with TRANSP prediction
ANPA measures fast ion energy spectrum

- NPAs measure energy spectrum of fast neutrals (fast ions that have charge-exchanged)
- MST’s ANPA measures 0.5-30 keV ions with H/D mass separation

\[\text{Signal strength } \propto n_0 n_{fi} \langle \sigma v \rangle_{cx} \]
ANPA signal analysis dependent on n_0

Signal strength $\propto n_0 n_{fi} \langle \sigma v \rangle_{cx}$

- NPA signal level is dependent on n_0 at the location of the collision

- Magnetic events increase both n_{fi} and n_0; must decouple
 - Must know ion profile as well neutral profile
 - Can also use neutron signal, which has much weaker n_0 dependence

![Graph showing ANPA signal and Core D_α over time](image)
Summary

• Background neutral density is an important parameter for analysis of plasmas, particularly NPA signal analysis

• Neutral density is calculated in MST by comparing NENE models with measured D_α light emission

• Neutral density estimates show rough agreement with CHERS data and fast ion confinement times
Summary

• Background neutral density is an important parameter for analysis of plasmas, particularly upcoming NPA signal analysis.

• Neutral density is calculated in MST by comparing NENE models with measured D_α light emission.

• Neutral density estimates show rough agreement with CHERS data and fast ion confinement times.

Questions?