Non-Axisymmetric Equilibrium Reconstruction: V3FIT

James D. Hanson
Auburn University
(on sabbatical at Tech-X, Boulder, CO)
Acknowledgements

• Auburn University
 Steve Knowlton
 Greg Hartwell
 Adam Stevenson
 Mark Cianciosa
 Jonathan Hebert
 John Shields

• Oak Ridge National Laboratory
 Steve Hirshman
 Ed Lazarus (at GA)
 Aaron Sontag
 Jeff Harris

• General Atomics
 Lang Lao

• University of Wisconsin
 John Schmitt
 Enrico Chlechowitz

• Consorzio RFX, Padova
 David Terranova

• Max-Planck-Institute, Greifswald
 Joachim Geiger

• Los Alamos National Laboratory
 John Finn
 Chris Jones

• Princeton Plasma Physics Laboratory
 David Gates
 Ali Zolfaghari

• College of William and Mary
 Gene Tracy

• Tech-X Corporation

• USDOE
Outline

• Explain: “Non-Axisymmetric Equilibrium Reconstruction – V3FIT”

• Example of reconstructions from CTH

• Probability and Inverse Problems – Posterior Covariance

• Magnetic diagnostics and eddy currents

• Summary and Conclusion
Non-Axisymmetric Equilibrium Reconstruction – V3FIT

- **Axisymmetric**
 - Idealized Tokamak

- **Non-Axisymmetric**
 - Stellarator / Torsatron
 - Real Tokamak
 - Reversed Field Pinch
Non-Axisymmetric **Equilibrium** Reconstruction – V3FIT

- **Ideal MagnetoHydroDynamics (MHD)**

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \\
\rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v} \cdot \nabla \vec{v} = \vec{J} \times \vec{B} - \nabla p \\
\left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right) \left(\rho \rho^{-\gamma} \right) = 0 \\
\vec{E} + \vec{v} \times \vec{B} = 0 \\
\nabla \cdot \vec{B} = 0 \\
\nabla \times \vec{B} = \mu_0 \vec{J}
\]

- **Equilibrium:** \(\frac{\partial}{\partial t} \rightarrow 0 \quad \vec{v} \rightarrow 0 \)

\[
\vec{J} \times \vec{B} = \nabla p \\
\nabla \cdot \vec{B} = 0 \\
\nabla \times \vec{B} = \mu_0 \vec{J}
\]

- **Ideal MHD Equilibrium** – answers the question: “Where is the plasma?”
Non-Axisymmetric Equilibrium Reconstruction – V3FIT

- Ideal MHD Equilibrium + Axisymmetry \Rightarrow Grad-Shafranov Equation

$$B = \frac{1}{R} \nabla \psi \times \hat{e}_\phi + \frac{F(\psi)}{R} \hat{e}_\phi$$

$$\psi(R, Z) \quad p(\psi) \quad F(\psi)$$

$$\Delta^* \psi = -\mu_0 R^2 \frac{dp}{d\psi} - F \frac{dF}{d\psi}$$

- The magnetic field lies on surfaces of constant ψ, called flux surfaces.

- Need to specify the profile functions $p(\psi)$ and $F(\psi)$.

- The boundary conditions are vital.
 - Fixed-boundary – the outermost surface of the plasma is specified.
 - Free-boundary – the currents in external coils are specified.
Non-Axisymmetric Equilibrium Reconstruction – V3FIT

• Equilibrium reconstruction is the process of inferring the profiles p and F (and thus the full equilibrium) from measurements.

• Signals S_i
 – can be computed from the equilibrium (model signals)
 – can be measured from an experiment (observed signals)
 – Examples – magnetic diagnostic signals, soft x-ray signals

• Parameters p_j
 – Quantities that specify the equilibrium
 \[p(\psi) = a_0 + a_1\psi + a_2\psi^2 + ... \]
 – Pressure and current profiles, external currents, total flux enclosed.

• Vary the parameters to minimize:
 \[\chi^2 = \sum_i \left(\frac{S_i^{\text{model}}(p_j) - S_i^{\text{observe}}}{\sigma_i} \right)^2 \]

• Parameters at minimum of χ^2 - these are equilibrium parameters.
Non-Axisymmetric Equilibrium Reconstruction – V3FIT

- Non-axisymmetry is *MUCH* harder than axisymmetry.
- Magnetic field-line flow is a Hamiltonian system (since $\nabla \cdot \vec{B} = 0$). Breaking axisymmetry corresponds to losing a conserved quantity (Noether’s theorem).
- Magnetic fields no longer need lie on flux surfaces.
 - Some field lines do lie on flux surfaces (black)
 - Some flux surfaces break up into chains of magnetic islands (blue)
 - Some field lines wander chaotically – fill a three-dimensional region of space (red)
Non-Axisymmetric Equilibrium Reconstruction – V3FIT

• Non-axisymmetric ideal MHD equilibrium – there is controversy about if this is a well-posed problem.
• Two main issues: the small-scale structure in the magnetic field, and the applicability of infinite conductivity to chaotic field lines.
• This has not stopped people from writing non-axisymmetric equilibrium codes.
• Assume good flux surfaces (no islands or chaotic regions):
• Do NOT assume good flux surfaces (allow magnetic islands and chaotic regions):
 – SIESTA [Hirshman, Sanchez, and Cook, *Physics of Plasmas* 18 062504 (2011)]
 – SPEC [Stuart Hudson, private communication]
Non-Axisymmetric Equilibrium Reconstruction – V3FIT

• **V3FIT is based on the VMEC 3-D equilibrium code**
 – VMEC is fast and robust – can get results between shots
 – VMEC can compute both free- and fixed-boundary equilibria
 – V3FIT iterations are closely coupled to the VMEC convergence
 – V3FIT has been benchmarked with the EFIT axisymmetric ER code

 `[Nuclear Fusion 49 075031 (2009)]`

• **V3FIT signal types (S):**
 – Magnetic diagnostics, Soft X-rays, Plasma limiters
 – Additional diagnostics under development

• **V3FIT Reconstruction Parameters (p):**
 – Pressure and current profile parameterizations
 – External currents
 – Total enclosed flux (size of the plasma)

• **V3FIT is in use on:**
 – CTH (Compact Toroidal Hybrid – Auburn University)
 – HSX (Helical Stellarator eXperiment – University of Wisconsin)
 – LHD (Large Helical Device –Toki, Japan – [Aaron Sontag – ORNL])
 – RFX (Reversed Field eXperiment – Padova, Italy – [David Terranova])
Outline

X Explain: “Non-Axisymmetric Equilibrium Reconstruction – V3FIT”

→ Example of reconstructions from CTH

• Probability and Inverse Problems – Posterior Covariance

• Magnetic diagnostics and eddy currents

• Summary and Conclusion
CTH – Compact Toroidal Hybrid

- Auburn University, Steve Knowlton – Principal Investigator
- Torsatron with Ohmic heating coils
- Major radius 0.75 m
CTH – Compact Toroidal Hybrid
Reconstruction – Shot 11050236

- **Reconstruction Parameters (2)**
 - Phiedge \((\Phi_e)\) – total toroidal flux enclosed in plasma – size of plasma
 - Toroidal current profile parameter \(\alpha\):
 \[
 I(s) = \int \vec{J} \cdot \hat{e}_\phi \, d^2 A
 \]
 \[
 I'(s) = a_0 (1 - s^\alpha)^5
 \]

 Note: Radial coordinate \(s = \Phi / \Phi_e\) labels flux surfaces, \(0 \leq s \leq 1\)

- **Signals (27)**
 - Three 8-part Rogowski coils
 - One full Rogowski coil
 - Two plasma limiters
 - (at different toroidal angles).

- **One reconstruction takes about 3 minutes on a single processor.**
- **663 reconstructions**
CTH Shot 11050236

![Graph of plasma current over time](image)

- X-axis: Time (s)
- Y-axis: Plasma Current (MA)

The graph shows the plasma current over time, reaching a peak at approximately 1.64 seconds and decreasing rapidly thereafter.
Outline

X Explain: “Non-Axisymmetric Equilibrium Reconstruction – V3FIT”

X Example of reconstructions from CTH

→ Probability and Inverse Problems – Posterior Covariance

• Magnetic diagnostics and eddy currents

• Summary and Conclusion
Probability and Inverse Problems

• **Forward problem** – start with a model, compute expected observations
 – Compute signals S given model parameters p: $S_{\text{model}}(p)$
 – Drop a rock down a well. You know the depth of the well h. How long does it take to hit bottom t_{drop}?
 – For a VMEC-computed equilibrium, what signal do you expect in magnetic diagnostic # 27?

• **Equilibrium reconstruction is an Inverse Problem**
 – Infer model parameters from observed signals: $\rho(S_{\text{observe}})$
 – You heard the rock hit the water 2 seconds after you dropped it. How deep is the well?
 – Which VMEC parameters will best match all the magnetic diagnostic observations?

• **Probability** – quantification of uncertainty
 – Observed signals are not known to infinite accuracy.

• **Bayesian view of probability and statistics is most natural for physicists**

• **References I have found useful:**
Probability and Inverse Problems

\[\chi^2 = \sum_i \left(\frac{S_{\text{model}}(p_j) - S_{\text{observe}}}{\sigma_i} \right)^2 \]

\[= \left(\tilde{S}_{\text{model}}(\vec{p}) - \tilde{S}_{\text{observe}} \right)^T \cdot \underline{C}^{-1} \cdot \left(\tilde{S}_{\text{model}}(\vec{p}) - \tilde{S}_{\text{observe}} \right) \]

\[\underline{C}^{-1} = \begin{pmatrix}
\sigma_1^{-2} & 0 & 0 \\
0 & \sigma_2^{-2} & 0 \\
0 & 0 & \ldots
\end{pmatrix} \]

\[(\underline{C})_{ij} = \sigma_i \sigma_j \delta_{ij} \]

- C – Covariance matrix of the signal noise
- Specifying a probability distribution on space of signals.
- Assumption that signal noise is uncorrelated \(\Leftrightarrow \) C diagonal
- \(\underline{C}^{-1} \) acts like an inner product on the signal space - \(\chi \) is a dimensionless distance on the signal space.

\[\langle \delta S_A | \delta S_B \rangle = \left(\delta \tilde{S}_A \right)^T \cdot \underline{C}^{-1} \cdot \left(\delta \tilde{S}_B \right) \]
Signal Space

- The model function $\mathcal{S}_{\text{model}}(\mathcal{P})$ takes a point in parameter space to a point in signal space.
- Usually, the signal space has much higher dimensionality that the parameter space.

- Solid curve – Image of a one-dimensional parameter space, $\mathcal{S}_{\text{model}}(\mathcal{P})$

- Red dot – observed signals $\mathcal{S}_{\text{observe}}$

- Dashed lines – probability distribution of observations
Jacobian

- The Jacobian relates small changes in parameters to small changes in signals:
 \[(J)_{ij} = \frac{\partial S_i^\text{model} (\hat{p})}{\partial p_j} \quad \delta \hat{S} = J \cdot \delta \hat{p} \]

- The Jacobian can transfer the inner product \(C^{-1} \) on signal space into an inner product on parameter space.

\[
\langle \delta \tilde{p}_A | \delta \tilde{p}_B \rangle = \langle \delta \tilde{S}_A | \delta \tilde{S}_B \rangle \\
(\delta \tilde{p}_A)^T \cdot C_p^{-1} \cdot (\delta \tilde{p}_B) = (\delta \tilde{S}_A)^T \cdot C^{-1} \cdot (\delta \tilde{S}_B) \\
\Rightarrow \quad C_p^{-1} = J^T \cdot C^{-1} \cdot J \\
\]

\[
= (J \cdot \delta \tilde{p}_A)^T \cdot C_p^{-1} \cdot (J \cdot \delta \tilde{p}_B) \\
\]

- Interpret \(C_p \) as characterizing a probability distribution in parameter space.
Posterior Parameter Variance

- The diagonal elements of C_p are the posterior parameter variances

\[\sigma_{pj} = \sqrt{(C_p)_{jj}} \]

- C_p need not be diagonal – the reconstructed parameters may be correlated.

- V3FIT computes the Jacobian in minimizing χ^2. It also computes the posterior parameter variances.

- At right, black dots are reconstructed parameters, and gray lines indicate $\pm \sigma_{pj}$
Chi-Squared Distribution

• For Gaussian noise in the Signals, the minimum χ^2 values are expected to have a chi-squared distribution.

• The CTH results do NOT have a chi-squared distribution.
Fly in the Ointment

• When plotted vs. time, the problem becomes apparent:

• The χ^2 values are strongly correlated with the plasma current.

• Conclude:
 (1) There are systematic errors (not just Gaussian noise)
 (2) The model is not adequate

• Note: the model is both the equilibrium computation and the magnetic diagnostic signal computation.
Outline

X Explain: “Non-Axisymmetric Equilibrium Reconstruction – V3FIT”

X Example of reconstructions from CTH

X Probability and Inverse Problems – Posterior Covariance

→ Magnetic diagnostics and eddy currents

• Summary and Conclusion
Magnetic Diagnostics

- Magnetic diagnostics measure the magnetic flux through a loop of wire.
 \[\Phi_i = \int \mathbf{B} \cdot d\mathbf{A}_i = \oint \mathbf{A} \cdot d\mathbf{l}_i \quad \mathbf{B} = \nabla \times \mathbf{A} \]

- Outside the plasma, represent all current density as current in groups of filamentary wires. Then the flux integral can be simplified to
 \[\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' \]

- The model is now both the MHD equilibrium and the external current representation.
- For a fast and efficient way to compute the plasma contribution volume integral, see
CTH External Coils
CTH
Vaccum Vessel and Coil Frame
Magnetic Diagnostics and Eddy Currents

• Least accurately modeled current-carrying pieces of metal – the vacuum vessel and the coil frame.

• Measured currents in these structures are significant, induced by the ohmic loop voltage (and other time-changing magnetic fields)

• Auburn University requested assistance from Princeton Plasma Physics Laboratory “Offsite University Research Program” for help modeling the eddy currents in these complicated structures.

• Ali Zolfaghari and Dave Gates from PPPL.

• CAD models of structures -> eddy current modeling code SPARK.

• Translate results in format appropriate for VMEC input.
PPPL Results Translated to VMEC Format

Vacuum Vessel

Coil Frame

• Status – Checking results from PPPL
• Expect V3FIT reconstruction comparisons soon.
Summary

• **V3FIT Code Usage:**
 – CTH (Auburn University)
 – HSX (University of Wisconsin)
 – RFX (Padova, Italy)
 – LHD (Toki, Japan)

• **Magnetic Diagnostics and plasma limiter – well tested**

• **Soft x-rays tested, not yet in routine use**

• **Other diagnostics under development**

• **Applications of 3D equilibrium reconstruction**
 – Stellarators/ torsatrons
 – Tokamaks with significant non-axisymmetries
 – RFP’s in single-helicity state

• **Opinion –**
 – Equilibrium reconstruction imposes a well-structured discipline on both experimentalists and theorists/modelers.
 – Confronting discrepancies highlighted by equilibrium reconstruction helps improve both experiment and modeling.