Stabilization of the Resistive Wall Mode and Error Field Reduction by a Rotating Conducting Wall

Carlos Paz-Soldan

Rotating walls predicted to stabilize the RWM

- Wall stabilization first proposed by Gimblett, PPCF (1989)
- We compare our results to theory of Hegna, PoP (2004)
 - Linear Eigenvalue problem solved for ideal MHD plasma and resistive thin-walls

- Our Main Results:
 - Wall rotation can stabilize the RWM
 - Error fields are found to lock the RWM
 - Wall rotation profoundly affects error fields
$B_z \approx 0.1 \, \text{T}$
$I_p \approx 7 \, \text{kA}$
$L = 1.2 \, \text{m}$
$R = 8 \, \text{cm}$
$t \approx 20 \, \text{ms}$
$\tau_w = 7 \, \text{ms}$
$\tau_A \approx 2 \, \mu\text{s}$
$T_e \approx 3.5 \, \text{eV}$
$n_e \approx 10^{20} \, \text{m}^{-3}$

Paz-Soldan et al, RSI (2010)
System is differentially rotating

- The secondary wall rotates (at atmosphere)
- The vacuum vessel is fixed
- Fluxloops reside in between the walls
Cylindrical experiments allow rotating solid conductors

- A torus would require flowing liquid metal

\[V_\theta(r) = r \Omega_w \]

\[V_\theta(r) = f(r, R_e) \Omega_w \]
High-speed rotating wall built

\[\tau_w = \sigma \mu_0 r_w \delta_w \quad R_m = \Omega_w \tau_w \]

- Want many \(\tau_w \)/pulse and large \(R_m \)
- Pulse is short, so \(\Omega_w \) must be fast
- Design: 7000 RPM = 300 km/h (!)
- \(r_w = 9 \) cm, \(\delta_w = 1 \) mm, \(L = 1 \) m
- \(\tau_w = 7 \) ms, \(R_m = 5 \)
• But, other physics are present

• Wall rotation matters to these phenomena too!
 – We will explore each independently
First consider error field penetration:

- Insert $m = 1$ field, what happens as wall rotates?
Error fields are excluded (shielded), rotated

Shielding:

\[\frac{1}{\sqrt{1 + \frac{R_m^2}{4}}} \]

\[B/B_0 \]

\[R_m \]

Rotation:

\[\arctan \left(\frac{R_m}{2} \right) \]

\[\phi \text{ (rad)} \]

\[R_m \]
Error field thus depends on applied field and R_m

(This is experimental data)
Field penetration time decreases as wall rotates

- Shielding still seen at $t = \infty$
- However, error field reaches a smaller value faster
- Consider $m=1$ vacuum field Eigenmodes
 - We will see this is a consequence of differential rotation
• Single wall Eigenmode is dipole-like, and \(\gamma = \frac{2}{\tau_w} \)

• Define a coupling (‘gap’) parameter, \(\alpha \equiv \frac{r_a^2 - r_b^2}{r_b^2} \)

• As coupling increases, Eigenmodes branch into a slow and fast root
Rotation decouples Eigenmodes

- Rotation brings Eigenvalues towards single-wall values
 - Fast mode slows down
 - Slow mode speeds up
Speeding up of slow root is the observation

- The slowest mode dominates the observation after few ms
- Rotation increases the decay constant (eigenvalue)
- Results of calculation consistent with data
 - Dotted lines are +/- 2% on wall time
 - No free parameters
- This would not be observed on single-wall system
Potential measurements indicate plasma has intrinsic ExB

- Cold plasma (big η), large J_z, yields big E_z (large V_{bias} needed)

- MHD instabilities thus naturally have a real frequency in lab frame
Micro-tutorial: equilibrium and mode fields

- $B_{r,m=1}$: what the fluxloop measures, it is like the current centroid.
- B_{ext}: externally applied $m=1$ error field.
 - It is never measured as it is applied prior to fluxloop integration.
- B_{eq}: the $m=1$ equilibrium field from a misalignment between magnetic and geometric axis (a field error, arising from B_{ext}).
- B_{mode}: the field signature of the MHD instability.
 - It usually has a real frequency ω in the lab frame.
Micro-tutorial: equilibrium and mode fields

- Experimental data will be presented in this form
- \(B_{\text{mode}} \) here is a rotating RWM saturated for entire shot
- As \(\omega \gg \Omega_w \), **we must slow** \(\omega \) to see \(\Omega_w \) effect mode
Guide field ripple brakes plasma

- Axially localized $m = 0$ used
- Equilibrium and thus ExB flow is modified
 - Neoclassical effects small due to large collisionality
Mode locking observed at slow rotation

- As $m = 1$ error field increased, three regimes seen:
 - Rotating RWM: mode never locks during the discharge
 - Locking RWM: mode locks during the discharge
 - Born-locked RWM: oscillations never observed

\[\frac{B_{\text{ext}}}{B_z} < \mathcal{O}(10^{-2}) \]
Error field defines RWM regime

- Convolution present: R_m affects error field, which also affects RWM
- Error fields are always small: $\frac{B_{ext}}{B_z} < \mathcal{O}(10^{-2})$
- Effect of wall rotation in each regime must be studied independently
Wall rotation stabilizes locking RWM

- Increasing R_m lowers amplitude, growth rate of the locked RWM
- Wall is seen to couple ω to locked mode
- Picture qualitatively consistent with theory
- Post-lock growth is non-linear:
 - cannot be quantitatively compared to theory
Asymmetry in locked RWM rotation

• Notice locked RWMs rotate slowly even if $\Omega_w=0$
 – This rotation is counter-initial ExB
 – Thus, an anomalous torque present

• Locked RWM response is resultantly asymmetric in Ω_w

• Reversing B_z reverses the asymmetry
Stability window of RWM extended

- Born-locked modes studied
 - remove ambiguity between locking threshold and RWM onset
- RWM onset defined as where $B_{r,m=1}$ deviates from B_{eq}
- B_{mode} is found by vector subtraction of B_{eq}
- Onset occurs at considerably higher I_p for fast rotation
Stability window of RWM extended

- B_{mode} onset occurs at lower $q (=q_{\text{crit}})$ as R_m increased
- q_{crit} is everywhere somewhat above theoretical prediction
- Offsetting q_{crit} such that $q_{\text{crit}}=1$ @ $R_m=0$ yields better agreement
- Theory assumes a top-hat current profile with radius r_p,
 - thus $q=q(r_p) =$constant everywhere inside plasma.
 - q (5 cm) is as measured by the mid-radius anode ring, $q(r)$ is not constant
RWM Eigenfunctions are anode-localized

- Helicity seen in RWM
- Symmetry of theoretical model not observed in experiment
- Flows are suspected to be the cause
 - Axial flow of $M \sim 0.3$ measured by Mach probe
 - Predicted by Ryutov to advect Eigenfunction
 - Sheared azimuthal flow at cathode may be stabilizing
 - Neither flow is treated in Hegna PoP (2004) model

Experiment

Theoretical

$V_z = 0$
$V_z = \sim 0.1 M_a$

Ryutov, PoP (2006)
Conclusions

• Rotating wall has been shown to stabilize RWM, increase stable operation window
• Error fields are required to brake intrinsic plasma rotation and thus define the observed RWM regime
• Wall rotation affects error fields strongly
• Qualitative agreement with theory observed
 – Inclusion of more physics (flows, magnetic shear, resistivity) likely needed to make quantitative comparisons
How do we measure B_{eq}

- B_{eq} is a baseline shot with low field ripple
 - Plasma is unbraked and never locks, don’t see big B_{mode}
- $B_{eq} + B_{mode}$ is a shot with larger ripple
 - Ripple doesn’t affect B_{eq}
Microtutorial: Mode Locking

- Consider a simple ad-hoc torque model:

\[I_{zz} \dot{\omega} = \Gamma = \frac{A_{vis}(\Omega_0 - \omega)}{\Gamma_{vis}} - \frac{A_{EM} \omega}{1 + (\omega \tau_w)^2} \]

- ‘viscosity’ to a natural frequency \((\Omega_0)\)
- Electromagnetic torque is non-monotonic
- We look at zero-inertia limit (zero net torque)
- Find that allow zero torque (roots of the equation)
Several regimes of mode locking model

- Large natural frequency (Ω_0):
 - only one ω is a root
 - It is stable
 - Called ‘fast branch’

\[
\Gamma = A_{vis}(\Omega_0 - \omega) - A_{EM} \frac{\omega}{1 + (\omega \tau_w)^2} \]

\[
\Gamma_{vis} \quad \Gamma_{EM}
\]
Several regimes of mode locking model

- Mid-range natural frequency (Ω_0):
 - Three ω roots
 - 2 stable, 1 unstable
 - All branches seen

\[
\Gamma = \frac{A_{vis}(\Omega_0 - \omega)}{\Gamma_{vis}} - \frac{A_{EM}}{1 + (\omega \tau_w)^2} \frac{\omega}{\Gamma_{EM}}
\]
Several regimes of mode locking model

- **Bifurcation frequency** (Ω_0):
 - 2ω roots
 - Fast branch unstable
 - Slow branch stable

\[
\Gamma = A_{vis} \left(\Omega_0 - \omega \right) \frac{1}{\Gamma_{vis}} - A_{EM} \frac{\omega}{1 + (\omega \tau_w)^2} \frac{1}{\Gamma_{EM}}
\]
Several regimes of mode locking model

- Small natural frequency (Ω_0):
 - Only slow branch remains

\[\Gamma = \frac{A_{vis}(\Omega_0 - \omega)}{\Gamma_{vis}} - \frac{A_{EM}}{1 + (\omega \tau_w)^2} \frac{\omega}{\Gamma_{EM}} \]
Mode locking: bifurcations

- Decreasing Ω_0 can cause ω to ‘jump’ from fast root to slow root (bifurcate)
 - This is the mode lock
- Increasing Ω_0 again would not unlock mode until slow branch bifurcated
 - Hysteresis is present
Wall rotation and EM torque

- Electromagnetic torque in presence of differentially rotating walls can be calculated using thin-wall, long-cylinder approximations.
- For fast wall rotation, the bifurcation is lost:
 - No more mode locking
 - Mode unlocking is even more strongly affected
 - It is much easier to unlock a mode when the wall rotates

\[\Omega_{0,\text{lock}} \quad \Omega_{0,\text{unlock}} \]

\[\omega/2\pi \text{ (kHz)} \]

\[\Omega_0/2\pi \text{ (kHz)} \]

\[R_m = 0 \]

\[R_m = 1 \]

\[R_m = 3 \]

\[R_m = 5 \]

\[R_m = 7 \]

\[R_m = 9 \]

\[\omega_{\text{lock}} \]

\[\omega_{\text{unlock}} \]

\[f \text{ (kHz)} \]

\[R_m \]

\[\Omega_{0,\text{lock}} \]

\[\Omega_{0,\text{unlock}} \]
Experiment overview: plasma guns

- Plasma is generated by an array of 7 washer-stabilized hollow-cathode plasma guns
- Dense plasma in gun allows large space-charge limited currents
- Allows current-driven MHD modes at modest B_z

Experiment overview: anode

- Segmented (bullseye) anode allows a coarse measure of the q-profile
- This is the parameter of importance to current-driven RWM stability
- Anode also provides a highly conducting boundary condition
Resistive wall modes are a performance limiting instability

- Plasma pressure (\(\sim \beta\)) limited by long wavelength ideal MHD modes
- Plasma current (\(I_p\)) is also limited by ideal MHD stability
- The resistive wall mode (RWM) can be excited in both these limits

\[
P_{\text{fus}} \propto \beta^2
\]

\(\beta_N = 3.5\)

Strait et al, PoP 1994
Typical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial field</td>
<td>B_z</td>
<td></td>
<td>500 G</td>
</tr>
<tr>
<td>Plasma current</td>
<td>I_p</td>
<td></td>
<td>2.1 kA</td>
</tr>
<tr>
<td>Electron density</td>
<td>n_e</td>
<td></td>
<td>5×10^{14} cm$^{-3}$</td>
</tr>
<tr>
<td>Electron temperature</td>
<td>T_e</td>
<td></td>
<td>3.5 eV</td>
</tr>
<tr>
<td>Spitzer resistivity</td>
<td>$10^{-4} ln(\Lambda)T_e^{-\frac{3}{2}}$</td>
<td>η</td>
<td>230 $\mu\Omega$m</td>
</tr>
<tr>
<td>Electron thermal speed</td>
<td>$(2k_b T_e/m_e)^{\frac{1}{2}}$</td>
<td>v_{Te}</td>
<td>110 km/s</td>
</tr>
<tr>
<td>Sound speed</td>
<td>$(\gamma k_b T_e/m_i)^{\frac{1}{2}}$</td>
<td>C_s</td>
<td>24 km/s</td>
</tr>
<tr>
<td>Alfven speed</td>
<td>$B_z/(n_e m_i \mu_0)^{\frac{1}{2}}$</td>
<td>v_A</td>
<td>49 km/s</td>
</tr>
<tr>
<td>Mach number</td>
<td>v_z/C_s</td>
<td>M</td>
<td>0.3</td>
</tr>
<tr>
<td>Alfven time</td>
<td>r/v_A</td>
<td>τ_A</td>
<td>2 μs</td>
</tr>
<tr>
<td>Resistive diffusion time</td>
<td>$r^2 \mu_0/\eta$</td>
<td>τ_{res}</td>
<td>52 μs</td>
</tr>
<tr>
<td>Energy confinement time</td>
<td>P_{ohm}/W</td>
<td>τ_E</td>
<td>10 μs</td>
</tr>
<tr>
<td>Lundquist number</td>
<td>τ_{res}/τ_A</td>
<td>S</td>
<td>26</td>
</tr>
<tr>
<td>Plasma Beta</td>
<td>$2\mu_0\langle p\rangle/B^2$</td>
<td>β</td>
<td>10 %</td>
</tr>
<tr>
<td>Volumetric ohmic heating</td>
<td>$\int \eta J^2 dV$</td>
<td>P_{ohm}</td>
<td>200 kW</td>
</tr>
<tr>
<td>Ion mean free path</td>
<td>$(n_i \sigma_i)^{-1}$</td>
<td>λ_i</td>
<td>3 μm</td>
</tr>
<tr>
<td>Electron mean free path</td>
<td>$(n_e \sigma_e)^{-1}$</td>
<td>λ_e</td>
<td>500 μm</td>
</tr>
<tr>
<td>Ion skin depth</td>
<td>c/ω_{ci}</td>
<td>δ_i</td>
<td>13 mm</td>
</tr>
<tr>
<td>Electron skin depth</td>
<td>c/ω_{ce}</td>
<td>δ_e</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Electron larmor radius</td>
<td>v_{Te}/ω_{ce}</td>
<td>ρ_e</td>
<td>0.1 mm</td>
</tr>
</tbody>
</table>

* $L = 1.22$ m is the plasma length, $r \approx 10$ cm is the plasma diameter. k_b is Boltzmann’s constant, γ is the adiabatic index, and Λ is the coulomb logarithm.
Decoupling is RWM stabilization

- Including plasma effects, the two-mode picture is preserved
 - Now fast mode is stable
 - Rotation destabilizes
 - Slow mode is unstable
 - Rotation stabilizes
 - Transition to stability happens at critical R_m

\[
\vec{B}(r, \theta, t) = \vec{B}(r, \theta) e^{-\gamma t}
\]
Micro-tutorial: error field penetration

- To gain intuition on the effect of the rotating wall, consider:
 - A purely $m = 1$ DC field is applied (B_{ext})
 - Wall is allowed to rotate at a given R_m
 - All transients are allowed to decay
 - What happens to the field inside, outside the wall?
Potential measurements indicate plasma has intrinsic ExB

- Resulting rotation profile is complex
 - Strongest at cathode mid-radius
 - Vanishing at anode
 - Rigid body rotation in core, viscosity appears large
 - Sheared both radially and axially
Potential measurements indicate plasma has intrinsic ExB

- Cold plasma (big \(\eta \)), large \(J_z \), yields big \(E_z \) (large \(V_{bias} \) needed)
- Radial gradients in \(J_z(R) \) yield \(E_r \), as :

\[
V_p(R, Z) = \int_{L}^{Z} \eta J_z(R) dZ
\]

- Anode must be an equipotential, \(\eta \) is constant (isothermal plasma)