“-CARS and LIF Studies of Non-Equilibrium Nsec Pulsed Molecular Plasmas”

Walter R. Lempert
The Ohio State University
Columbus, OH

16th International Symposium on Laser-Aided Plasma Diagnostics”
September 25, 2013
Madison, WI
A Bit of Motivation

Brief Introduction to Coherent Anti-Stokes Raman Scattering (CARS) and OH and Two Photon LIF.

Measurements in Non-Equilibrium Nsec Pulsed Plasmas.
 i. H₂/Air PAC Model Validation and Non-Thermal Ignition
 ii. Vibrational Energy Dynamics.
 iii. NO, N, and O Measurements.

Some Initial Thomson Scattering and Psec E-field Measurements.

Conclusions and Acknowledgements.
Motivation

Low T ($T_g \sim 300–800$ K, $T_e \sim 1–2$ eV), High P ($\sim 0.1 – 1$ Bar) Air and “Air Like” NEQ plasmas have shown promise for a variety of applications including aerodynamic flow control, plasma combustion, and plasma medicine (jets).

NS Surface DBD - 45 m/sec (thermal interaction)
Little et al, AIAA J., 2012

Effect of $O_2 (a^1 \Delta_g)$ on flame propagation speed
(T. Ombrello, AFRL – WPAFB)

But Understanding of Underlying Kinetics / Energy Transfer is Often Lacking.
The CARS process can be thought of as two 2-photon processes:

1.) The pump and Stokes photons interact to create a **Coherent Oscillating Polarization**, which is maximum when the energy difference between the photons is equal to a molecular resonant frequency.

2.) Probe photons (typically from the same laser as the pump) anti-Stokes Raman scatter from this polarization **Coherently, in what is known as the “Phase Matching Direction”**

\[
\begin{align*}
E_{\text{CARS}} & \propto E_{\text{pump}} E_{\text{Stokes}}^* E_{\text{probe}} \left(n_i, \text{ quantum state} - n_j, \text{ quantum state} \right) \\
I_{\text{CARS}} & \propto I_{\text{pump}} I_{\text{Stokes}} I_{\text{probe}} \left(n_i, \text{ quantum state} - n_j, \text{ quantum state} \right)^2
\end{align*}
\]
Typical Schematic for Psec CARS*
(* Patterned after S. Roy, et al.)

Ekspla Nd:YAG Laser
- 10 Hz, ~150 psec pulses
- 125 mJ per pulse max @ 532 nm

Modeless Psec Dye Laser
- Broadband ~592-610 nm FWHM
- ~7-10% conversion efficiency
- Spectral Resolution ~0.4 cm⁻¹

Folded Box-CARS
- ~0.5 mm (length) x 0.1 mm (diameter) spatial resolution

Diagram Details
- Short-Pass Filter
- 100mm Lens
- Relay Lens Magnification System
- EMCCD
- 0.75 m Spectrometer
- Nd:YAG
- Broadband Dye Laser
- beam dump
- test section
Very Broadband Pyrrromethene Dye Mixture (* S. Tedder, et al., 2011)

95% of signal generated in ~0.5 mm
Some Typical Psec CARS Spectra

The Ohio State University

Vibrational Q-branch

\(P = \sim 92 \text{ torr, H}_2\text{-air (} \phi = 0.4 \) \\
\((P_{N_2} \sim 60 \text{ Torr}) \) \\
100 Shot Average \\
“High” Resolution (\(\sim 0.4 \text{ cm}^{-1} \))

Nonequilibrium Thermodynamics Laboratory

Pure Rotation

\(P = 40 \text{ Torr (} P_{O_2} \sim 6.5 \text{ Torr}), 20\% \text{ O}_2/\text{Ar} – \text{ H}_2, \phi = 0.5 \) \\
401 nsec Discharge Pulses, 200 Shot Average

\(T = 375 +/- 7 \text{ K} \)

Line Spacing: \(\sim J*(J+1)*(B_1-B_0) \) \\
\((B_1-B_0) \sim 0.01* \) * \(B_0 \)

Line Spacing: \(\sim 4B_0 (N_2) \) \\
\(\sim 8B_0 (O_2) \)
Psec CARS Thermometry: Precision and Accuracy (Vibrational Q-Branch)

Histograms produced from 60 fitted spectra at each temperature. Standard Deviation ~10-15 K for both conditions (within ~3-4%)

Sample 100-shot accumulation spectra, in 100 Torr air. $T_0 = 300, 500$ K
O, NO, N LIF/TALIF Experimental Schematic
(All measurements performed with single dye)

O Calibrated Using Xe*

\[N_O = \frac{S_O}{S_{Xe}} \cdot g_{ND} \cdot \frac{a_{21}(O)}{a_{21}(Xe)} \cdot \frac{\hat{\sigma}^{(2)}(Xe)}{\hat{\sigma}^{(2)}(O)} \cdot \left[\frac{v_O}{v_{Xe}} \right]^2 \cdot \frac{1}{F_0(T)} \cdot N_{Xe} \]

NO Calibrated Using 100 ppm NO/N\textsubscript{2}

N Calibrated Using Kr*

Kinetic Modeling: Coupled Master Equation / 0 and 1D* Boltzmann Equation Model of Nonequilibrium Air Plasma

\[
\frac{dn_v(t)}{dt} = (\text{El. imp})_v + (VT)_v + (VV)_v + (VE)_v + (V - \text{Chem})_v
\]

El. Imp.: inelastic electron impact processes by free electrons. \(N_2 \ v = 1, 12 \) excited including processes such as:

\[
N_2(X, v) + e \rightarrow N_2(X, w) + e \quad 0 \leq v, w \leq 12
\]

VT: vibration-to-translation/rotation energy relaxation

VV: vibration-to-vibration energy exchange

VE: electronic-vibration energy transfer during collisional quenching

Exc State Chem: chemistry coupling for electronically (and formally vibrationally) enhanced reactions such as

\[
N_2^* + O \rightarrow NO + N
\]

- Rotational and translational modes are in equilibrium at a gas kinetic temperature
- Single vibrational quantum change processes dominate at low temperatures involved
- Significant body of theory and experimental validation data for the rates used
- Master equation coupled to Boltzmann equation for electron energy distribution, species concentrations equations. \(N_2 \ v = 0, 45 \) included as well as estimate of cathode fall.

(*Working on 2-D in collaboration with M. Kushner)

Nonequilibrium air plasma chemistry, excited electronic states kinetics are included
Ex: Model Validation and Non-Thermal Ignition
Plasma creation by nsec pulsed discharge: \(\sim 30 \text{ kV, } \sim 5 \text{ nsec duration, repetition rate up to } 100 \text{ kHz.} \)

Coupled pulse energy \(\sim 0.7 \text{ meV/molecule} \rightarrow \Delta T \sim 2 \text{ K/molecule/pulse.} \)

- Discharge dimensions \(1 \text{ cm x 2 cm x 6 cm} \), right angle quartz prism 6 cm long for optical access
- \(\text{N}_2, \text{ air, H}_2\text{-air, and C}_x\text{H}_y\text{-air at } T_0 = 100-300^\circ \text{C, } P=50-500 \text{ torr, } \phi=0.03-1.2 \)
- Flow velocity \(u=40 \text{ cm/sec; residence time in the discharge } \sim 0.1 \text{ sec} \)
- Ample optical access (LIF, TALIF, CARS) for species and temperature measurements

For ns plane-to-plane DBD the specific coupled pulse energy is quite low, typically ~0.7 meV/molecule ($\Delta T \sim 2K$/pulse). For this reason the measurements are performed in repetitive “burst” mode.

- Time between individual pulses in burst: $\sim 10 - 25 \mu s$ (40 – 100 kHz).
- Time delay after last pulse in burst, Δt: $\sim 2 - 10,000 \mu s$.
- Burst repeated at 5 – 10 Hz, sufficient to purge gas in measurement volume.
Model Validation: Ignition in \(\text{H}_2\)-air* Mixtures Repetitively Pulsed NS DBD

Ignition volume

\[\text{H}_2\text{-air, } T_0=473 \text{ K, } P=80 \text{ torr, } \nu=40 \text{ kHz} \]

Ignition (as determined by OH spontaneous emission), AFTER application of variable “burst” of ns pulses is extremely reproducible and exhibits a very well defined threshold!

(* Chemistry model of N. Popov)
Time-resolved Psec CARS Temperature of H₂-air AFTER Application of Pulse Burst
(φ=0.4 H₂-air at T₀=500 K, P=92 torr and ν=10 kHz)

Rotational T

Rotational T (and modeled OH)
Log scale

* Models quantitatively captures temperature evolution.
* When burst size reduced to 99 pulses, ignition does not occur.
* Threshold ignition temperature $T_f \sim 700$ K - BELOW ~ 900 K autoignition T.
* No overshoot in non-ignition cases, temperature decays to baseline $T_0=500$ K.
Modeling Predictions With and Without Plasma Generation of H and O.

With and without plasma generation of O and H, including dissociation by electron impact and by quenching of N_2^*.
N_2 Vibrational Dynamics in Air (and pure N_2)
Smaller (compared to plane-to-plane), bare spherical electrodes enables significantly increased power loading (~300-700 meV/molecule at P = 100 Torr (11.5 - 17 mJ coupled pulse energy) while creating diffuse, uniform plasma with large enough plasma volume to be easily probed by laser diagnostics.

\[N_2 \quad 100 \text{ Torr} \]
Characterization of Discharge Filament Size

The Ohio State University
Nonequilibrium Thermodynamics Laboratory

ICCD Images
During (left) and 1 μsec after pulse (right).
Air, P = 100 Torr, T = 300 K

Spatial scan of “1st Level” T_v by CARS

![Graph showing spatial scan of T_v vs X distance]
Some Typical CARS Spectra – 100 Torr N$_2$
(Normalized to v=0)

100 laser “shot” averaged spectra as function of time after rising edge of current pulse.

Extraction of vibrational level populations by least squares curve fitting.

Vibrational (Log Intensity Scale)

$n=0$

$n=3$

$n=6$

$n=9$
Air, 100 Torr, High Loading: VDFs as Function of Time After Rising Edge of Current.

Total N_2 Vibrational Quanta Increase Significantly Between 1 – 10 μs!
What Does (Zero D) Model Predict?

1. Predicts electron impact vibrational excitation quite well.
2. Does NOT predict INCREASE in vibrational quanta after $\sim 1\mu s$ (V-V Transfer Only)
3. Over predicts rotational/translational temperature.

Results suggest collisional processes AFTER plasma decay which “feed” vibration of the ground electronic state. For example

\[N_2(C) + N_2(X) \rightarrow N_2(B) + N_2(X, v) \]
\[N_2(A) + N_2(A) \rightarrow N_2(B, C) + N_2(X, v) \]
Results in N₂ are Similar (CARS and Spontaneous Raman Scattering)

Spontaneous Raman Spectrum
N₂, P = 100 Torr, Tᵢ = 300 K
10⁵ laser “shot” (1 hour @ 30 Hz) average.
0.1 (dia) x 2.5 (length) mm spatial resolution

Intensity, counts
3x10⁴
2x10⁴
1x10⁴
594 596 598 600 602 604 606 608
Wavelength, nm

v=6
v=0
v=12

5 µs delay

ε, meV/molecule
εᵥ, meV/molecule

Vib. quanta per molecule

Energy input
Energy vibrational mode
Nᵥ quanta

Time, sec
10⁻⁸ 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10⁻²
0.0 0.1 0.2 0.3
An Even Earlier CARS Study*

N\textsubscript{2} Pulsed (400 nsec) “Glow” Discharge
P = 60 Torr.

Observed Increase in Total (\(v=1,4\))
vibrational quanta.

Attributed to
N\textsubscript{2} (A) + N\textsubscript{2} (A) \rightarrow N\textsubscript{2} (C) + N\textsubscript{2} (X,v)

\(\downarrow\) Total Energy Stored in Vibration

NO, N, and O Measurements (By Single/Two Photon LIF in Single Filament Discharge)
NO Excitation Spectrum (Low Resolution)

Relatively T Insensitive

Intensity (a.u.)

Wavelength (Å)

P1(3,14) P1(5,12) P1(5,11) P1(7,10) P1(8,9) P1(7,10) P1(6,11) P1(5,12)
P2(23) P1(2,24) Q12(16) Q12(10) P1(2,24)
Air, 100 torr, “Belke Switch” Pulser - 4 mJ/pulse
N, O, and NO predictions (Baseline 1-D model)

N₂* States in Baseline Model

N₂(C ³Π_u)

N₂(a' ¹Σ_u⁻)

N₂(B ³Π_g)

N₂(A ³Σ_u⁺)

Ground

NO Formation:
N₂⁺ + O → NO + N
k[A ³Σ] = 7 · 10⁻¹² cm³/s,
k[other states] = 5 · 10⁻¹⁰ cm³/s

O + N₂ ← NO + N

N, NO loss due to reverse Zeldovich reaction
Air, 100 torr, 4 mJ/pulse
N, O, and NO predictions (Full 1-D model)

N_2^* States in Full Model

$N_2(E \ 3\Sigma_g^+)$
$N_2(C \ 3\Pi_u)$
$N_2(B' \ 3\Sigma_u^-)$
$N_2(W \ 3\Delta_u)$
$N_2(B \ 3\Pi_g)$
$N_2(A \ 3\Sigma_u^+)$

$N_2(a'' \ 1\Sigma_g^+)$
$N_2(w \ 1\Delta_u)$
$N_2(a' \ 1\Pi_g)$
$N_2(a' \ 1\Sigma_u^-)

Ground

$N_2^* + O \rightarrow NO + N$

$k[A \ 3\Sigma] = 7 \times 10^{-12} \text{ cm}^3/\text{s}$,

$k[\text{other states}] = 5 \times 10^{-10} \text{ cm}^3/\text{s}$
Vibrationally Excited N₂ Production by Reverse Zeldovich Process

Measurements of vibrationally excited molecules by Raman scattering. I
The yield of vibrationally excited nitrogen in the reaction N+NO→N₂+O

Graham Black, Robert L. Sharpless, and Tom G. Slanger

ΔH = ~11 N₂ (v) quanta
(Exothermic)

Citation: J. Chem. Phys. 58, 4792 (1973); doi: 10.1063/1.1679061

View online: http://dx.doi.org/10.1063/1.1679061

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v58/i11

Published by the AIP Publishing LLC.
NO in Air and H₂-Air: Summary, P = 40 Torr
High Specific Pulse Energy (∼550 meV/molecule)

The Ohio State University

Nonequilibrium Thermodynamics Laboratory

- Air
- H₂ phi = .07
- H₂ phi = .22

NO lifetime 100 X longer in fuel mixtures!
(N + OH → NO + H)
Thomson Scattering and Four wave Mixing Based E-Field Measurements
Thomson Scattering – Triple Grating Schematic*, **

The Ohio State University

Nonequilibrium Thermodynamics Laboratory

Mask (1 mm)

Nd:Yag 2nd Harmonic (532 nm).
30 Hz – 0.5 J/pulse.

(** Acknowledgement: U. Czarnetzki, Ruhr-University Bochum)
Initial Thomson Scattering Studies in Helium Single Filament Discharge

The Ohio State University Laboratory

Pulsed Filament Conditions:
- 125 ns pulse duration – 60 Hz rep rate.
- ~10 kV peak discharge voltage.
- ~45-55 amps peak discharge current.
- ~15–17 mJ/pulse coupled energy.

Nonequilibrium Thermodynamics

Typical voltage, current, and coupled energy waveforms (P=100 torr).

~100% of energy coupled in 100 nsec.

N₂ Pure Rotational Raman Calibration Spectrum

![Graph showing N₂ Pure Rotational Raman Calibration Spectrum with wavelength (nm) on the x-axis and intensity (a.u.) on the y-axis.]
Some Sample Spectra (As function of time after rising edge of current pulse: Helium – 100 Torr)

(t > ~100 nsec Corresponds to “Afterglow”)
Model is centerline, whereas experiment is spatially averaged over \(\sim 2\) mm and temporally averaged over 10 nsec.
Sub-Nsec Electric Field Measurement by CARS-like Four Wave Mixing
(w. Prof. S. O’ Byrne, U. New South Wales, Australia)

Energy Level Diagram for E-Field CARS

- “E-Field CARS” is a 4 wave mixing process.
- The typical CARS probe beam is replaced by an external electric field, which is at essentially zero frequency. This creates an IR “CARS” signal at the vibrational frequency.
- The physical origin of this signal is the dipole induced by the external field.
- Phase Matching for E-Field CARS is collinear.

\[E_{IR} = \chi_{IR} E_{Pump} E_{Stokes} E_{External} \]
\[E_{CARS} = \chi_{CARS} E_{Pump} E_{Stokes} E_{Pump} \]
\[\frac{E_{IR}}{E_{CARS}} = \left(\frac{\chi_{IR}}{\chi_{CARS}} \right) \star \left(\frac{E_{External}}{E_{Pump}} \right) \]
\[E_{External} = \left(\frac{\chi_{CARS}}{\chi_{IR}} \right) \sqrt{\left(\frac{I_{IR} I_{Pump}}{I_{CARS}} \right)} \]

Stimulated Raman Shifting Cell Used to Generate H_2 Stokes Beam

Typical Raman Cell Conversion
25 ps Pump @ 532 nm (P= 11 Bar)

Output Energy (mJ)

0 1 2 3 4 5 6 7 8 9

0 5 10 15 20 25

Input Energy (mJ)

anti-Stoke's
Stoke's
Pump

Significant pump power lost due to backwards SBS!
E-Field CARS Temporal Resolution

- Recent work has been done to determine H$_2$ coherence decay time
 - Vibrational CARS intensity created only during 30 picosecond laser pulses
 - E-Field CARS generated until initial polarization decays
- At pressures <1 Bar, coherence decay time decreases approximately linearly with pressure

Initial Results – Diffuse Filament Point-to-Point Discharge

100 Torr Air
Preliminary 2-D Fsec H Atom Imaging in Single Filament Discharge (J. Schmidt talk)

1% H₂ / Helium, P = 100 Torr

Discharge Spontaneous Emission image

5 second average TALIF image
(1 kHz image acquisition rate, 12 μJ/pulse @ 205 nm)
Principal Conclusions

- Psec CARS rotational temperature measurements demonstrate non-thermal ignition in H₂ – air nsec repetitively pulsed plasmas.
- Temporal Evolution of VDF, determined by CARS (and spontaneous Raman), indicates collisional “feeding” of N₂ vibration - Perhaps N₂ (A) + N₂ (A) → N₂ (C) + N₂ (X,v) AND (in air) NO + N → N₂ (v) + O.
- NO formation (in air) dominated by enhanced Zeldovich O + N₂* → NO + N including complete set of N₂ excited electronic states.
- NO Loss dominated by reverse Zeldovich: NO + N → O + N₂ where it appears that significant N₂(v) is formed.
- Psec four wave mixing-based E-field measurement has been demonstrated.
Acknowledgements

• Nikolay Popov: Many Discussions of NEQ Kinetics.
• Cam Carter: Enormous help with OH LIF diagnostic.
• Sean O’Byrne: E-Field
• Uwe Czarnetzki: Thomson Scattering & E-Field.
• Sukesh Roy and Waruna Kulatilaka: Psec CARS.

Sponsors

• AFOSR (PAC MURI & Hypersonics Programs).
• DOE/U. Mich Low Temperature Plasma Science Center.
• DOE/Spectral Energies Phase I SBIR.
• NSF: Plasma Physics Program.
Questions?
Pure Rotational CARS

- Uses planar, orthogonal polarization phase matching scheme*.
- Minimizes "non-resonant" background and facilitates separation of Probe and CARS beams, which have virtually the same wavelength.
- Enables high intensity beams with insignificant distortion of spectrum due to Stark broadening.

(*) Vestin,)
Psec Pure Rotational CARS Thermometry
(Model validation studies in O$_2$/Ar)

The Ohio State University
Nonequilibrium Thermodynamics Laboratory

H$_2$/O$_2$/Ar, P = 40 Torr, T$_0$ = 300 K \(\nu = 25 \) kHz
(Popov Chemistry Model)

401 pulses, 200 Shot Average, 95% CI = 7 K

- \(P_{O_2} \approx 6 \) Torr.
- Laser intensity results in significant Stark broadening, but it does not influence the pure rotational temperature.
- Temperature precision (95% CI) \(\approx \) 5-10 K.
- Inferred temperature agrees well with model predictions.
Why Psec CARS?

OSU Portable CARS System (~0.75 x 1.5 m)

- For...mation with chemical...r...ter
- In...ical...nt with chemical...r...ter
- In...ical...nt with chemical...r...ter

Component labels:
- Computer
- Spectrometer
- Nd:YAG
- Dye Laser
- YAG Power Supply
- Dye Pumps and Reservoirs
Some Other Similar Work in Nsec Discharges

The Ohio State University

- \(T_v \) and \(T_{rot} \) \(\text{N}_2 \) Pin-to-Pin Discharge
- 1 Bar by CARS \((v=0-2\) Probed\)*
- (Attributed to V-V xfer)

\[
\text{N}_2 (v) + \text{N}_2 (w) \leftrightarrow \text{N}_2 (v+1) + \text{N}_2 (w-1)
\]

Nonequilibrium Thermodynamics Laboratory

- \(T_v \) and \(T_{rot} \) \(\text{N}_2 \) Pin-to-Plane Air
- 1 Bar by Spontaneous Raman*

![Graph 1](image1)

![Graph 2](image2)

N_2, 100 Torr, High Loading: VDFs as Function of Time After Rising Edge of Current.

Total Vibrational Quanta INCREASES by Factor of \sim Two AFTER 1μsec
(Consistent with Devyatov)
Psec CARS Sensitivity: Mach 5 Flow Measurements Using nsec Pulser-DC Sustainer Discharge in Plenum to load N_2 (v)

The Ohio State University

Nonequilibrium Thermodynamics Laboratory

5 mm diameter x 7.5 mm long quartz cylinder model.

- (a) Free-stream ($P_0 \sim 1.2$ Torr, $T_0 \sim 50$ K) and behind shock ($P_0 \sim 30$ Torr, $T_0 \sim 300$ K) – 8 shot average, Plasma OFF.
- (b) Mach 5 free-stream, Pulser-sustainer discharge 10 shot average.
- (c) Behind bow shock, Pulser-sustainer discharge 10 shot average.

Sensitivity limited by EMI pick-up of CCD camera.
Model Validation: Vibrational Energy Loading

Vibration loaded by low E/n pulse reflections.

Analytical 1-D DBD Model Predictions (Adamovich)

\[P_0 = 100 \text{ torr air}, \ T_0 = 300 \text{ K}, \ \nu = 10 \text{ kHz}. \]
Model Validation: Vibrational Energy Decay

\[P_0 = 100 \text{ torr air}, \ T_0 = 300 \ K. \]

- Model predicts energy loading quantitatively.
- Model slightly under predicts rate of vibrational energy decay.
- Rate of V-T relaxation (by O\textsubscript{3}) likely under predicted.

\[\text{N}_2(\nu = 1) + \text{O}_3(000) \rightarrow \text{N}_2(\nu = 0) + \text{O}_3(101) \]
NO – Summary of Results – Air, C₂H₄-Air

P = 40 Torr

Ethylene-Air Behavior is Similar

- Air
- C₂H₄ phi = 0.48

Number Density (cm⁻³)

Time After First Pulse (µsec)
Data/1-D Model Comparison

Air
\[\Phi = 0.14 \]
\[\Phi = 0.41 \]

Extended NO lifetime due, principally, to extended Zeldovich process:
\[N + OH \rightarrow NO + H \]

Peak NO and NO decay rate over predicted in this case.
NonEquilibrium Thermodynamics Laboratory (NETL)

The Ohio State University

Nonequilibrium Thermodynamics Laboratory

Igor Adamovich, Bill Rich, Sergey Leonov, Jeff Sutton

Current Students
Suzanne Lanier David Burnette Caroline Winters Jacob Schmidt
Ben Goldberg Andrew Roettgen Zak Eckert Annie Pulcini

Current Staff and Post Docs
Kraig Frederickson Munetake Nishihara Evgeny Ivanov
Ivan Shkurenkov Sherrie Bowman Zhiyao Yin

Recent Students/Postdocs
Inchul Choi Mruthunjaya Uddi Yvette Zuzeek Naibo Jiang
Brian Thurow Aaron Montello Joeseph Heinrichs Keisuke Takashima

Recent Collaborators
Cam Carter / Jim Gord (AFRL) Martin Gundersen / Scott Pendleton (USC)
Waruna Kulatilaka, Sukesh Roy, Jacob Schmidt (Spectral Energies)
Sean O’Byrne (U. of New South Wales)
OH LIF: Experimental Apparatus

Excite linear laser excitation of transitions in OH A-X (1,0) @ ~280 nm; Collect fluorescence from (0,0) and (1,1) bands @ ~310 - 313 nm.
OH LIF – Some Details

LIF excitation spectrum and Boltzmann plot used for temperature measurement. T Agrees Well with CARS.

EX: H₂-air, T₀=500 K, P=100 Torr, φ=0.12, ν=10 kHz, 50 pulses.

Q₁(3) excitation gives high sensitivity and modest T – dependence.

Absolute [OH] by Rayleigh scattering calibration

\[S_{OH} = n_{OH} f_b b_{lu} E_j \left(\frac{W}{4p} \right) \]

\[S_{Ray} = \frac{e_{Ray}}{hc} \int \int \left(\frac{I W_b}{\omega} \right) d \omega d \lambda \]

\(I \Omega \beta \) product determined from slope of \(S_{Ray} \) vs (NE) = (P/kT)E.