Two-Dimensional Imaging of Atomic Hydrogen in Pulsed, Non-Equilibrium Nanosecond Plasmas Using Femtosecond TALIF

Jacob B. Schmidt, Waruna D. Kulatilaka, Sukesh Roy
Spectral Energies, LLC.
Dayton, OH USA

Kraig A. Frederickson, Ivan Shkurenkov, Igor V. Adamovich, Walter R. Lempert
The Ohio State University
Columbus, OH USA

James R. Gord
Air Force Research Laboratory
WPAFB, OH USA

16th International Symposium on Laser Aided Plasma Diagnostics
September 22-26, 2013
• Much work in non-thermal, non-equilibrium plasma discharges generated from nanosecond-duration electrical discharges.
 • Biomedical
 • Materials
 • Combustion
• Concentration measurements of important intermediate species in these non-equilibrium plasmas are still needed.
 • For example, H, N and O in various molecular plasmas.
 • Provide insights into the physical and chemical nature of the plasma system.
 • Facilitate the development of model-based predictive capabilities
Traditional nanosecond two-photon absorption laser-induced fluorescence can be limited by:
- Point-based measurements
- Laser-generated photolytic interferences
- Quenching (must be run at low pressure)

Femtosecond planar two-photon absorption laser-induced fluorescence:
- Enhanced excitation due to larger number of photon pairs from increased bandwidth of near Fourier-transform limited femtosecond pulses.
- Reduced single-photon photo-dissociation due to low average power.

Current work demonstrates proof-of-principle, line imaging of atomic species (H, N) inside low-temperature, nanosecond-pulsed, pin-to-pin, non-equilibrium discharge using fs-TPLIF.
Multi-photon excitation schemes

Two-photon induced fluorescence (TPLIF) Excitation scheme

Other species requiring TP excitation

<table>
<thead>
<tr>
<th>Species</th>
<th>Excitation Wavelength (nm)</th>
<th>LIF Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2 x 205</td>
<td>656</td>
</tr>
<tr>
<td>O</td>
<td>2 x 226</td>
<td>845</td>
</tr>
<tr>
<td>N</td>
<td>2 x 207</td>
<td>745</td>
</tr>
<tr>
<td>Kr</td>
<td>2 x 204</td>
<td>826</td>
</tr>
<tr>
<td>Xe</td>
<td>2 x 224</td>
<td>835</td>
</tr>
<tr>
<td>CO</td>
<td>2 x 230</td>
<td>483</td>
</tr>
</tbody>
</table>

- Collisonal quenching
- Photoionization
- Stimulated emission
- Photolytic production

Experimental apparatus

Laser System
- Regenerative and single-pass ultra-fast amplifier
 - (~1 mJ/pulse at 820 nm)
- Home-built frequency quadrupler
 - (~12 μJ/pulse at 205 nm)

Imaging System
- High-speed visible intensifier, lens coupled to a CCD camera (or CMOS)
- Also used an intensified CCD (ICCD) camera
8-mm diameter electrodes are arranged in a modified pin-to-pin geometry in a 2” diameter, six-way glass cross with UVFS windows.

Top electrode receives +5.0 kV pulsed high voltage from a MOSFET high-voltage switch while the bottom electrode is grounded.

Typical voltage, current and electrical power over an 8-mm gap for 1% hydrogen in helium at 100 torr is shown.
Typical H atom fs-TPLIF Results

Line Imaging

- Externally-intensified (LaVision IRO SA-24) Andor (Newton®) CCD
- 85mm lens with 2” diameter Semrock (BrightLine®) filter
- 16 μm / pixel spatial resolution (with ~30 mm of lens tube extension)
- 300 ns intensifier gate duration; 1 sec CCD exposure; 1000 shots per image
- Typical signal-to-noise ratio of 20:1 (80:1 best case)

Sheet Imaging

Spectral Energies, LLC. Dayton, OH
- 1% H₂ in argon at 100 torr
- +5 kV applied to anode
- Collected 25 µs after onset of applied voltage
- 100 mW (avg) laser power
- 22 images used to create reconstructed image
- 75% overlap from image to image
• 1% H₂ in helium at 100 torr
• + 5 kV applied to anode
1D modeling Coupled Poisson equation, Boltzmann equation and non-equilibrium plasma chemistry.

Discrepancies observed between experiment and model could be due to reduced pulse energy observed in model.
Hydrogen Plasma Dissociation

Applied voltage and current plots for:
1% H₂ in He
1% H₂ in Ar

Temporal dissociation plot showing decay of H in 1% H₂ in helium and argon.
Temporal dissociation plot for various mixture fractions in argon at 100 torr.

Temporal dissociation plot for various mixture fractions in helium at 100 torr.

- Production is peaked at 1% admixture in both argon and helium.
- Argon decay rates are very consistent for all admixture percentages.
- Production is 25% higher in helium, but have very similar populations after 50 μs.
- 100% nitrogen at 100 torr
- + 5 kV applied to anode
- Fluorescence is challenging to collect due to strong emission from $\text{N}_2 \text{ B} \rightarrow \text{A (4-2)}$ at $\sim 750\text{nm}$.
- Collected 50 μs after onset of applied voltage
Conclusions

- Development of ultrafast Ti:Sapp laser system
 - Ultrafast amplifier (100 fs FWHM, 10 kHz, 1 mJ/pulse at 820 nm)
 - Home-built quadrupler (~10 μJ/pulse at 205 nm)
 - Enhanced excitation due to larger number of photon pairs from increased bandwidth of near Fourier-transform limited femtosecond pulses.
 - Reduced single-photon photo-dissociation due to low average power.

- Demonstration of 2D imaging in non-equilibrium nanosecond pulsed plasma
 - Obtained temporal decays and 2D reconstruction for H and N atom
 - Temporal delay scans up to 1 ms
 - Mixture fractions of 1% and 5% of H₂ in both He and Ar background gasses
 - Kr calibration for quantitative H atom populations
Funding for this research was provided by

United States Department of Energy (DOE)
Dr. Nirmol Podder, Program Manager

United States Air Force Research Laboratory (AFRL)

United States Air Force Office of Scientific Research (AFOSR)
Dr. Enrique Parra, Program Manager
Fs-duration Ti-Sapp laser with regen cavity and single-pass amplifier system produces ~100 fs pulses at 800 nm with 20 nm bandwidth.

Fundamental is mixed with third harmonic in a home-built frequency quadrupling unit to generate UV radiation consisting of 10 kHz, 12 µJ pulses near 200 nm.

Schemes to pump atomic species through two-photon absorption in UV1,2 are shown at right.

Intense laser pulses can photochemically produce atomic hydrogen

H-atom LIF line profile (ns excitation)

Main photolytic precursors for H:
- H_2O ($\text{H}_2\text{O} + \text{hv} \rightarrow \text{H} + \text{OH}$)
- CH_3 ($\text{CH}_3 + \text{hv} \rightarrow \text{CH}_2 + \text{H}$
 - $\text{CH}_2 + \text{hv} \rightarrow \text{CH} + \text{H}$
 - $\text{CH} + \text{hv} \rightarrow \text{C} + \text{H}$)

Short pulse excitation can enable interference-free detection via TPLIF

- Photolytic production scales linearly with pulse energy for single-photon photo-dissociation:
 \[N_{H_{ph}} \propto \int I dt \sim \left(\frac{E_L}{\Delta t} \right) \Delta t = E_L \]

- TPLIF signal scales quadratically with intensity:
 \[S_{LIF} \propto \int I^2 dt \sim \frac{E_L^2}{\Delta t} \]

- Short-pulse excitation reduces pulse energy required for two-photon excitation
 - Can it reduce interference?

Interference-free line imaging of H atoms in methane flames

ns excitation
(~8 ns)

- Radial Position (mm)
- Normalized LIF Signal
- 10-20 Hz, Shot-averaged

Premixed, CH₄/O₂/N₂ flame

ps excitation
(~100 ps)

- Radial Position (mm)
- Normalized LIF Signal
- 10 kHz, Single-shot

Spectral Energies, LLC. Dayton, OH