Resistive Magnetohydrodynamic Equilibrium and Stability of a Rotating Plasma with Particle Sources

Yi-Min Huang and A. B. Hassam

Institute for Research in Electronics and Applied Physics
University of Maryland

Basic Ideas of Centrifugal Confinement

- Use centrifugal forces from rotation to confine the plasma along field lines.

\[\mathbf{B} \cdot \nabla p = -\mathbf{B} \cdot (\rho \mathbf{u} \cdot \nabla \mathbf{u}) \sim 1 : M_S^2 \]

- Velocity shear could stabilize interchanges.
Simple Mirrors are Unstable to Flutes

\[g_{\text{eff}} \sim \frac{C_s^2}{R_c} \]

\[\gamma g \sim \sqrt{\frac{C_s'^2}{R_C L_p}} \]
Flutes in Simple Mirror - Simulation

- No rotation:
 \[B \cdot \nabla p = 0 \]

- \[V_A \sim C_S = 1 \]
Centrifugal Force can also Drive Flutes

This is analogous to the Rayleigh-Taylor Instability that occurs when a heavy fluid sits on top of a light fluid.

\[\gamma_g \sim \sqrt{\frac{g}{L_\rho}} \]

\[g \sim \frac{u_\phi^2}{r} \]
V' Stabilization of Flutes

V' tears apart convection cells of interchanges ⇒ shorten the length scales ⇒ non-ideal effects become important.

$$V' > \gamma_g (\ln(R_{\mu}))^{1/2} \Rightarrow \text{Stability}$$

(Hassam, Phys. Fluids. B. 1992)

- Non-ideal effects are essential for V' stabilization. Perturbations grow algebraically in the ideal limit.
- Finite Lamor radii effect is stabilizing. See the poster of Sheung-Wah Ng.
Kelvin-Helmholtz Instability

Velocity shear is also a potential instability driver...

Photo by Paul E. Branstine, Weatherwise magazine.

M. van Dyke *An album of fluid motion*
NMCX – 2D Laminar Profiles

Temperature

Pressure

Temperature

Pressure
NMCX – Velocity Shear Stabilization

Huang & Hassam, PRL (87), 2001
Motivation

The 2-D steady state of NMCX was in fact, not steady; it was still slowly evolving on transport time scales. If the resistivity is taken into account:

- Straight field and no particle sources $\Rightarrow J_\phi \rightarrow 0$ due to resistivity \Rightarrow density piles up towards the outside.
- Curved field \Rightarrow poloidal convections $\Rightarrow J_\phi \neq 0$ \Rightarrow

What is the steady state in the absence of particle sources?

NMCX is very stable, no wobbles as appeared in a previous Z-pinch simulation.

Is this a general result?
Resistive MHD with Particle Sources

Continuity equation with particle sources:

\[\nabla \cdot (\rho u) = S, \]

Momentum equation:

\[\rho u \cdot \nabla u = -\nabla p - \frac{\nabla B^2}{2} + B \cdot \nabla B, \]

Ohm’s law in the simplest form:

\[E = -\nabla \Phi = -u \times B + \eta J, \]

Ampere’s law:

\[J = \nabla \times B. \]
Particle Sources, Con’t

Assume purely poloidal field $B = \nabla \phi \times \nabla \psi$,

$$ J = \nabla \times B = r^2 \nabla \cdot \left(\frac{\nabla \psi}{r^2} \right) \nabla \phi $$

Take momentum equation along $\nabla \psi \Rightarrow$

$$ (\rho r \Omega^2 \hat{r} - \nabla p) \cdot \nabla \psi = \nabla \cdot \left(\frac{\nabla \psi}{r^2} \right) |\nabla \psi|^2 $$

Ohm’s law along $\hat{\phi} \Rightarrow$

$$ u \cdot \nabla \psi = \eta r^2 \nabla \cdot \left(\frac{\nabla \psi}{r^2} \right) $$

$$ = \eta r^2 \frac{(\rho r \Omega^2 \hat{r} - \nabla p) \cdot \nabla \psi}{|\nabla \psi|^2} $$
Integrate $\nabla \cdot (\rho u) = S$:

$$
\int_{\psi \leq c} S d\tau = \int_{\psi = c} \rho u \cdot \nabla \psi \frac{d\sigma}{|\nabla \psi|}
$$

$$
= \eta \int_{\psi = c} \rho r^2 (\rho r \Omega^2 \hat{r} - \nabla p) \cdot \nabla \psi \frac{d\sigma}{|\nabla \psi|^3}
$$

$$
= \eta \int_{\psi = c} \rho (\rho r \Omega^2 \hat{r} - \nabla p) \cdot \hat{n} d\sigma \frac{B^2}{|\nabla \psi|}
$$
Particle Sources, Corollary

$$\int_{\psi \leq c} S d\tau = \eta \int_{\psi = c} \frac{\rho (\rho r \Omega^2 \hat{r} - \nabla p) \cdot \hat{n} d\sigma}{B^2}$$

- $S = 0 \Rightarrow \rho r \Omega^2 \hat{r} \sim \nabla p$
 \Rightarrow **Density piles up exponentially**

- $\Omega = 0 \Rightarrow S \sim \eta \beta \rho / a^2$.
 $\Omega \neq 0 \Rightarrow S \sim (1 + M^2_S(a/r)) \eta \beta \rho / a^2$
 \Rightarrow **Centrifugal force enhances cross-field particle loss**

- Density profile could be controlled by particle sources.
 \Rightarrow **Additional knob for stability**
Dean Flow Model

Hassam, Phys. Plasmas, 1999
Dean Flow – Analytic Results

- V' stabilization:

$$r^2 \Omega'^2 > (-r \Omega^2 \rho' / \rho - gp'/p) \ln(R_\mu)$$

$$\sim 1 : (a/r : a / R_c M_S^2) \ln(R_\mu)$$

- High M_S can stabilize p' driven interchanges.
- ρ' driven interchanges are harder to stabilize.

- Generalized Rayleigh’s Inflexion Theorem

$$\frac{d}{dr} \left(\frac{\rho}{r} \frac{d(r^2 \Omega)}{dr} \right) \neq 0 \Rightarrow \text{KH ideally stable}$$

- Density profile is also crucial to KH.
Numerical Model

\[\partial_t \rho + \nabla \cdot (\rho u) = S, \]

\[\rho \partial_t u + \rho u \cdot \nabla u = -T \nabla \rho - \frac{\nabla B^2}{2} + B \cdot \nabla B + \mu \nabla^2 u + F \hat{\phi}, \]

\[\partial_t B = -\nabla \times E, \]

\[E = -u \times B + \eta \nabla \times B. \]

- \[\partial_z = 0, \text{ 2-D.} \]
- \[T = const, \text{ no effective gravity.} \]
- Flow is driven by \(F \).
- \(S \) is calculated to dial-in desired density profiles.
\[\rho \partial_t \mathbf{u} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -T \nabla \rho - \frac{\nabla B^2}{2} + \mathbf{B} \cdot \nabla \mathbf{B} + \mu \nabla^2 \mathbf{u} + \rho r \Omega_0^2 \hat{r} \]
Stabilization: Aspect Ratio

The system approaches laminar as R increases.

∇'

$R = 4$

$R = 2$

$R = 4$

$R = 6$

$R = 8$

$R = 10$
Deviation from the laminar state gets larger as μ or η become smaller.
Interchanges are localized about where $\Omega' = 0$. If ρ' is stabilizing there, the system could be completely stable.
Kelvin-Helmholtz Instability

K-H modes could be unstable when generalized Rayleigh’s criterion is not satisfied.
K-H and Interchanges

K-H modes and interchanges both occur when generalized Rayleigh’s criterion is not satisfied and ρ' is destabilizing at the weakest point.
Why NMCX so Stable?

Both \(\rho' \) and \(\rho' \) are stabilizing at the weakest point.
Summary

- Particle sources are necessary for a steady state of centrifugally confined plasmas. The density profile of the steady state depends on the placement of particle sources.

- The slowly diffusing steady state is realizable only when it is stable.
 - V' stabilization: localized interchanges about where $\Omega' = 0$; “transport barrier” is largely maintained.
 - K-H modes could occur when generalized Rayleigh’s criterion is not satisfied.

- With judicious placement of particle sources, a completely stable steady state could be achieved. Particle sources could be utilized to optimize the stability.