PHYSICALLY MOTIVATED AND MATHEMATICALLY CONSISTENT MAGNETIC HELICITY

by

M. J. Schaffer

General Atomics

Presented at the Innovative Confinement Concepts Workshop
U. Wisconsin, Madison, WI, 2004 May 25–28
MAGNETIC HELICITY

Magnetic helicity K is a measure of the flux linkage of a magnetic field \mathbf{B}.

Moffatt’s example of magnetic helicity…linked flux loops:

$$
K \equiv 2 \Phi_1 \Phi_2 = \int_{V=V_1+V_2} \mathbf{A} \cdot \mathbf{B} \, d^3x,
\quad d^3x = \frac{\Phi}{B} \, d\ell
$$

Linkage of a vector field is a global topological property.

In general must integrate over all space.

Helicity is a property of a complete object (magnetic field). But what if \mathbf{B} is known and/or of interest in only a limited region of space which links and connects with outside fluxes?

Local or differential magnetic helicity has no logically justified physical interpretation.
RELATIVE Helicity Has Physical Meaning

Following Berger & Field, \textit{J. Fluid Mech.} \textbf{147} (1984) 133, \textbf{Relative Helicity} K_{rel} is the helicity \textit{difference} between two fields in \textbf{all space}, physical field B and a chosen reference field B_{ref} outside the volume V of interest.

Let $B_{\text{ref}} = B$ outside of the volume V of interest, i.e., throughout V_{β}.

Because the linkages contributed by B_{ref} and B outside V are equal, they do not contribute to the \textbf{RELATIVE} helicity.

\[
K_{\text{rel}} = \int_{V_{\infty}} A \cdot B d^3x - \int_{V_{\infty}} A_{\text{ref}} \cdot B_{\text{ref}} d^3x
\]

$B = \nabla \times A$, \quad $B_{\text{ref}} = \nabla \times A_{\text{ref}}$
How to Define and Use Relative Helicity Has Not Been Made Clear

- Berger-Field did not extend their ideas to toroidally connected volumes, and some of their proofs were restricted to the Coulomb gauge, $\nabla \cdot \mathbf{A} = 0$, and to $\nabla \times \mathbf{B} = 0$.
 - Many authors follow Bevir-Gray and add a simple external flux linkage term, but then the toroidal surface must be a magnetic surface.
 - Extension of Berger-Field requires either restriction on gauge of \mathbf{A} or extra terms, e.g., Finn & Antonsen.
 - Alternatively, the torus is cut, yielding a simply connected volume. Must choose between magnetic surface or magnetically penetrated surface boundary cases.
- Boozer treated moving and deforming, toroidally and simply connected boundaries, but not with a relative helicity.
 - Moving boundary can change (a) linkage within V and (b) connection to outside.
 - Limited to stationary, simply connected volumes, a special gauge, and does not explicitly discuss relative helicity; but might still be valid.
- Need to formulate a physically meaningful, mathematically rigorous magnetic helicity and rules for its use, for at least

 toroidally and/or simply connected,
 arbitrarily penetrated,
 moving boundary
TOWARD A GENERALIZED MAGNETIC HELICITY
(a work in progress)

Begin with BF relative helicity over all space, \(V_\infty = V_\alpha + V_\beta \), with \(B_{\text{ref}} = B \) throughout \(V_\beta \):

\[
K_{\text{rel}} = \int_{V_\infty} A \cdot B \, d^3x - \int_{V_\infty} A_{\text{ref}} \cdot B_{\text{ref}} \, d^3x
\]

\[
= \int_{V_\alpha = V} \left(A \cdot B - A_{\text{ref}} \cdot B_{\text{ref}} \right) \, d^3x + \int_{V_\beta} \left(A - A_{\text{ref}} \right) \cdot B \, d^3x
\]

Since \(B_{\text{ref}} = B \) in \(V_\beta \), let \(A - A_{\text{ref}} = \nabla f_\beta \) in \(V_\beta \), with \(f_\beta \) globally well-defined, single-valued in \(V_\beta \).

Require that all sources be within \(V_\infty \), so \(B \) does not contribute to integrals at \(\infty \).

Let \(S \) be the (closed) surface that encloses \(V \) and \(n \) its outward unit normal vector.

Then,

\[
K_{\text{rel}} = \int_V \left(A \cdot B - A_{\text{ref}} \cdot B_{\text{ref}} \right) \, d^3x - \int_S f_\beta B \cdot n \, d^2x
\]

The surface integral is commonly overlooked or else eliminated by restrictive choice(s).

Here it is kept.
TOWARD A GENERALIZED MAGNETIC HELICITY (2)

Add some physics:

B (real field) and B_{ref} (reference field) should both be physically realizable in V_{∞} to have meaning.

Then, the following field components must each be continuous across S:

\[\mathbf{B} \cdot \mathbf{n}, \quad \mathbf{B}_{\text{ref}} \cdot \mathbf{n}, \quad \mathbf{A} \times \mathbf{n}, \quad \mathbf{A}_{\text{ref}} \times \mathbf{n}, \quad \nabla g \times \mathbf{n}, \quad \nabla g_{\text{ref}} \times \mathbf{n}, \quad g, \quad g_{\text{ref}} \]

\nabla g is any globally well-defined gauge function. Continuity of g means no charge double layer.
Continuity of normal B means no magnetic charge on S.
Continuity of tangential A and \nabla g means no magnetic flux sheets in S.

Therefore, \nabla f_{\alpha} \times \mathbf{n} = \nabla f_{\beta} \times \mathbf{n} across S. Because of continuity, can drop subscripts \(\alpha, \beta\) on S.

Then, the generalized relative helicity is

\[
K_{\text{rel}} = \int_{V} \left(\mathbf{A} \cdot \mathbf{B} - \mathbf{A}_{\text{ref}} \cdot \mathbf{B}_{\text{ref}} \right) d^{3}x - \int_{S} f \mathbf{B} \cdot \mathbf{n} d^{2}x
\]

where \(f\) must satisfy \nabla f \times \mathbf{n} = (\mathbf{A} - \mathbf{A}_{\text{ref}}) \times \mathbf{n} on S.

\(K_{\text{rel}}\) is independent of gauges \nabla g and \nabla g_{\text{ref}} added to \(\mathbf{A}\) and \(\mathbf{A}_{\text{ref}}\) and depends only on quantities in \(V\) and on \(S\), i.e., the “region of interest”.

(but remember to add \(g - g_{\text{ref}} + \text{(any constant)}\) to \(f\).
Decompose B into “CLOSED” and “OPEN” Components

Definitions:

Let \(B = B_{\text{cl}} + B_{\text{op}} \) and \(B_{\text{ref}} = B_{\text{ref,cl}} + B_{\text{ref,op}} \) \(\text{with } \nabla \cdot B_{\text{cl}} = \nabla \cdot B_{\text{op}} = \nabla \cdot B_{\text{ref,cl}} = \nabla \cdot B_{\text{ref,op}} = 0. \)

Require **closed** components to satisfy \(B_{\text{cl}} \cdot n = B_{\text{ref,cl}} \cdot n = 0 \) on S

Require **open** components to satisfy \(B_{\text{op}} \cdot n = B_{\text{ref,op}} \cdot n \neq 0 \) on S

Also let there be corresponding vector potentials that satisfy

\[
\begin{align*}
B_{\text{cl}} &= \nabla \times A_{\text{cl}} \\
B_{\text{op}} &= \nabla \times A_{\text{op}} \\
B_{\text{ref,cl}} &= \nabla \times A_{\text{ref,cl}} \\
B_{\text{ref,op}} &= \nabla \times A_{\text{ref,op}}
\end{align*}
\]

Closed B is fully contained within V and does not penetrate S; S is a magnetic surface of \(B_{\text{cl}} \).

Open B penetrates S and connects with the outside.

This decomposition is not unique.

Relative helicity then becomes

\[
K_{\text{rel}} = \int_V \left(A_{\text{cl}} \cdot B_{\text{cl}} + A_{\text{op}} \cdot B_{\text{op}} + A_{\text{cl}} \cdot B_{\text{op}} + A_{\text{op}} \cdot B_{\text{cl}} \right) d^3x
\]

\[
-\int_V \left(A_{\text{ref,cl}} \cdot B_{\text{ref,cl}} + A_{\text{ref,op}} \cdot B_{\text{ref,op}} + A_{\text{ref,cl}} \cdot B_{\text{ref,op}} + A_{\text{ref,op}} \cdot B_{\text{ref,cl}} \right) d^3x
\]

\[
-\int_S \left(f_{\text{cl}} \, B_{\text{cl}} + f_{\text{op}} \, B_{\text{op}} + f_{\text{cl}} \, B_{\text{op}} + f_{\text{op}} \, B_{\text{cl}} \right) \cdot n \, d^2x
\]
...and Simplify It...

The preceding K_{rel} expression simplifies greatly, yet still has physical content, if we require that

$$B_{\text{op}} = B_{\text{ref,op}}$$

everywhere in V.

This choice also makes the closed-open decomposition unique.

Many terms cancel, and K_{rel} simplifies to

$$K_{\text{rel}} = \int_V \left[A_{\text{cl}} \cdot B_{\text{cl}} - A_{\text{ref,cl}} \cdot B_{\text{ref,cl}} + 2 \left(B_{\text{cl}} - B_{\text{ref,cl}} \right) \cdot A_{\text{op}} \right] d^3x$$

The last integrand term can also be made equal to

$$+ 2 \left(A_{\text{cl}} - A_{\text{ref,cl}} \right) \cdot B_{\text{op}}$$

(using $B_{\text{cl}} \cdot n = 0$ and $(A_{\text{cl}} - A_{\text{ref,cl}}) \times n = \nabla f \times n$ on S)

Interpretation:

Relative helicity in toroidally and simply connected volumes can be reduced to the relative helicity of just a closed field component, plus (if S is penetrated by B) a cross linkage between closed and open field components.
So far, we have neither restricted gauge choice nor required that B_{ref} or its open or closed components be source-free (current-free).

Now consider special case where:

- B_{op} is current-free, a common choice
 - “Vacuum” B is the lowest energy field in V with given boundary conditions
 - Then let $B_{\text{op}} = B_{\text{ref,op}} = \nabla \chi$ in V, where χ is a well-defined scalar potential in V
- A_{op} and $A_{\text{ref,op}}$ gauges chosen so that each has the same “electric charge”
 - Then $\nabla \cdot (A_{\text{op}} - A_{\text{ref,op}}) = 0$ in V and $(A_{\text{op}} - A_{\text{ref,op}}) \cdot n = 0$ on S.

This is a less restrictive version of the Moses et al. gauge choice.

Then, the third term of K_{rel} integrates to zero, and

$$K_{\text{rel}} = \int_V \left(A_{\text{cl}} \cdot B_{\text{cl}} - A_{\text{ref,cl}} \cdot B_{\text{ref,cl}} \right) d^3x$$

This looks like a “closed field only” version of the BF relative helicity equation.
Differentiate K_{rel} with respect to time:

$$\frac{dK_{\text{rel}}}{dt} = \frac{d}{dt} \int \mathbf{A} \cdot \mathbf{B} \, d^3x - \frac{d}{dt} \int \mathbf{A}_{\text{ref}} \cdot \mathbf{B}_{\text{ref}} \, d^3x - \frac{d}{dt} \int f \mathbf{B} \cdot \mathbf{n} \, d^3x$$

$$= \int \frac{\partial}{\partial t} \left(\mathbf{A} \cdot \mathbf{B} \right) \, d^3x + \int \left(\mathbf{A} \cdot \mathbf{B} \right) \left(\mathbf{U} \cdot \mathbf{n} \right) \, d^2x$$

$$- \int \frac{\partial}{\partial t} \left(\mathbf{A}_{\text{ref}} \cdot \mathbf{B}_{\text{ref}} \right) \, d^3x + \int \left(\mathbf{A}_{\text{ref}} \cdot \mathbf{B}_{\text{ref}} \right) \left(\mathbf{U} \cdot \mathbf{n} \right) \, d^2x$$

$$- \frac{d}{dt} \int f \mathbf{B} \cdot \mathbf{n} \, d^3x$$

In what follows, I will use $\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \phi$, where ϕ is a scalar electric potential.

This helps to distinguish electrostatic from inductive effects.
We need EM fields in the moving frame of S(x,t), to apply boundary conditions at S.

Let \(\mathbf{x} \) be the coordinate vector in a “fixed” frame. Let \(\mathbf{U}(\mathbf{x},t) \) be the local normal component of the velocity of S(t) at \(\mathbf{x} \). \(\mathbf{U} \times \mathbf{n} = 0 \). In particular, let \(\mathbf{U} \) be the stream line field of a set of coordinate system points attached to S(x,t). Let prime (’) denote a value measured at a point \(\mathbf{x} \) in an inertial frame moving with the local \(\mathbf{U}(\mathbf{x},t) \).

Let \(\frac{\partial \mathbf{A}'}{\partial t} \) denote the temporal variation of \(\mathbf{A}' \) measured by an observer moving with a unique coordinate point on \(S(\mathbf{x},t) \), while \(\frac{d\mathbf{A}}{dt} \) is the convective derivative of \(\mathbf{A} \) along \(\mathbf{U} \) in the fixed frame.

Non-relativistic transformations between fixed and moving frames are:

\[
\begin{align*}
B' &= B \\
A' &= A \\
E' &= E + \mathbf{U} \times B \\
\phi' &= \phi - \mathbf{U} \cdot \mathbf{A} \\
\frac{\partial \mathbf{A}'}{\partial t} &= \frac{\partial \mathbf{A}}{\partial t} - \mathbf{U} \times B + \nabla(\mathbf{U} \cdot \mathbf{A}) = \frac{\partial \mathbf{A}}{\partial t} + \mathbf{U} \cdot \nabla \mathbf{A} = \frac{d\mathbf{A}}{dt}
\end{align*}
\]

Tangential components of \(\mathbf{E} \) are continuous across \(S \) in the moving frame.
Upon expanding the $\frac{d}{dt}$ of the surface integral, many terms cancel, leaving

$$\frac{dK_{\text{rel}}}{dt} = \int_{V(t)} \frac{\partial}{\partial t} \left(\mathbf{A} \cdot \mathbf{B} - \mathbf{A}_{\text{ref}} \cdot \mathbf{B}_{\text{ref}} \right) d^3x - \int_{S(t)} \frac{\partial (fB)}{\partial t} \cdot \mathbf{n} d^3x$$

- Only partial time derivatives appear in this form

Further algebra and the boundary condition $(\mathbf{E}' - \mathbf{E}'_{\text{ref}}) \times \mathbf{n} = 0$ on a moving surface $S(t)$ yields

$$\frac{dK_{\text{rel}}}{dt} = -\int_{V(t)} 2 \mathbf{E} \cdot \mathbf{B} d^3x + \int_{V(t)} 2 \mathbf{E}_{\text{ref}} \cdot \mathbf{B}_{\text{ref}} d^3x$$

- This has the same simple form as some prior developments of helicity evolution
- Further physics is needed to evaluate the $\mathbf{E} \cdot \mathbf{B}$ integrals
Plasma physics, including helicity and current source and sink terms, are added in a constitutive relation, a.k.a. Ohm’s law (A. Boozer, this conference).

The Braginskii two-fluid plasma Ohm’s law yields

\[\mathbf{E} \cdot \mathbf{B} = \eta_{||} \mathbf{J} \cdot \mathbf{B} - \frac{1}{en_e} \nabla n_e \cdot \mathbf{B} - \frac{0.7k}{e} \nabla T_e \cdot \mathbf{B} \]

- Parallel gradients of \(T_e \) and \(n_e \) or \(p_e \) can contribute to or subtract from helicity dissipation
 - Especially when B-lines are so long that particle density deviates from a line invariant
 - Hall \(J_e \times B \) term plays no role
SUMMARY

- Substantial progress has been made in an effort to formulate a broadly applicable, physically motivated, mathematically consistent relative magnetic helicity based on Berger-Field principles
 - Toroidally and simply connected volumes on an equal basis
 - No restrictions on B-field penetrations of bounding surface
 - Continuity and matching conditions are physically motivated, not *ad hoc*
 - Much progress can be made with no restrictive gauge requirement.
 - Decomposition of the magnetic field into closed and open components lends further insight
 - Relative helicity can be defined in terms of closed field components alone
- Helicity evolution equation has been partly formulated
 - Moving and deforming boundary with unrestricted B-field penetrations
 - No restrictive requirements imposed so far
- **Remaining Work:**
 - Evaluate and interpret $E_{\text{ref}} \cdot B_{\text{ref}}$ integral.
 - Decompose B into closed and open components
“Appendix on Measurement”
Helicity transported across a closed surface $S(x,t)$ bounding a volume $V(x,t)$ can be written as

$$\text{Helicity out of } S = \int_{S(t)} \left(A' \times \frac{\partial A'}{\partial t} + \phi' B' \right) \cdot n \, d^2x$$

With Moses’ gauge for A, we can drop the primes (moving coordinate system on S) and use variables in fixed lab frame; vector potential term drops out, so

$$\int_{S(t)} A' \times \frac{\partial A'}{\partial t} \cdot n \, d^2x = 0.$$

Therefore, we would only need to measure the simple helicity flux term $\overline{\phi B} \cdot n$

...just $B(t)$ normal to the plasma average magnetic surface and the true plasma potential

UCSD harmonic probe measures plasma potential.
Simple Helicity Flux Probe Concept:
Measure Local Plasma Potential and Normal Component of B