TCS Upgrade

K.E. Miller, J.A. Grossnickle, T.E. Dullart, W.S. Kemball
Redwood Plasma Physics Laboratory, University of Washington, Seattle

Introduction

The original TCS experiment has demonstrated the ability to create HCD plasmas whose densities are limited by impurity radiation. This was the first step toward a repeatable stellarator. The HCD plasma was created by means of helical field lines that are sustained by a set of four superconducting magnets. One of the original TCS magnets (10T) was added to the configuration, thus allowing for increased plasma density. The TCS is being extensively upgraded. All o-ring sealed flanges and all diagnostic ports have been replaced with bellows. This is necessary to maintain stress on the flanges caused by different coefficients of thermal expansion.

The Limiting Problem: Impurity Radiation

Secondary Engineering Challenge: **Obtaining the Large Quartz Interaction Chamber**

- The 0.4 meter diameter, 1.25 meter long quartz tube we have used in the past has two primary problems:
 - No take ports
 - Essentially not capable of holding vacuum load.
- These problems are manifested with cusp baffle, which would hold leak at 200°C, as well as the thermal loading.
- To maintain stress on the quartz caused by different coefficients of thermal expansion.
- A glow discharge system, along with Titanium getters and/or Boronization will be employed.
- Internal tantalum clad discharge tubes (LR = 6 meters) will shield the quartz confinement section to protect the quartz from the plasma. Tantalum shielding will be placed over the inside of all exposed stainless steel surfaces.
- A tantalum clad plasma chamber is shown to be highly effective at reducing contamination during capture of HCD plasmas.
- Two transition sections will be enlarged from 27 cm I.D. to a 68 cm I.D. to facilitate transport of ideal target plasmas for the RMF.
- The two transition sections will be joined to the quartz confinement section to allow passage of high temperature (approx. 500°C) gases.

Obtaining the Large Quartz Interaction Chamber

- This magnet is 9.5 times the size of the original TCS magnets. HCD plasma densities are limited by impurity radiation. This was the first step toward a repeatable stellarator. The HCD plasma was created by means of helical field lines that are sustained by a set of four superconducting magnets. One of the original TCS magnets (10T) was added to the configuration, thus allowing for increased plasma density. The TCS is being extensively upgraded. All o-ring sealed flanges and all diagnostic ports have been replaced with bellows.
- A glow discharge system, along with Titanium getters and/or Boronization will be employed.
- Internal tantalum clad discharge tubes (LR = 6 meters) will shield the quartz confinement section to protect the quartz from the plasma. Tantalum shielding will be placed over the inside of all exposed stainless steel surfaces.
- A tantalum clad plasma chamber is shown to be highly effective at reducing contamination during capture of HCD plasmas.
- Two transition sections will be enlarged from 27 cm I.D. to a 68 cm I.D. to facilitate transport of ideal target plasmas for the RMF.
- The two transition sections will be joined to the quartz confinement section to allow passage of high temperature (approx. 500°C) gases.

Secondary Engineering Challenge: **Constructing the Gate Magnet**

- The challenge arises because the 0.010" thick stainless steel is plasma facing, and it becomes a parameter we want control over.
- Before the plasma facing surface, the tantalum clad stainless steel is not plasma facing, and it is in an insulated vacuum port.
- The challenge arises because the 0.010" thick stainless steel is plasma facing, and it becomes a parameter we want control over.
- Before the plasma facing surface, the tantalum clad stainless steel is not plasma facing, and it is in an insulated vacuum port.

Obtaining the Taclad Internal Flux Rings

- We may use a set of three pieces, with around hose segment weldings.
- We are about to do a structural vacuum test