The Maryland Centrifugal Experiment
and Velocity Shear Stabilization
of Ideal MHD Interchanges

A. B. Hassam

for the MCX Team
R. F. Ellis, A. Case, A. DeSilva, R. Elton,
J. Ghosh, H. Griem, Y. Huang, R. Lunsford,
R. McLaren, S. Messer, S. W. Ng, J. Rodgers, C. Teodorescu

University of Maryland, College Park
Outline

1. Brief Status of the Experiment

Poster Session #2

- *Ellis et al*: MCX - Status
- *Teodorescu et al*: H-mode
- *Huang et al*: Resistive stability
- *Ng et al*: V' shear + FLR

2. What do we know about MHD Stability?

 A first assessment
Centrifugal Confinement

- initial vacuum $E.B$ => breakdown
- centrifugal forces => axial confinement
- rotation shear => stability to interchanges
- rotation shear => viscous heating
MCX – May 2004
Simple mirrors are unstable to flute interchanges
MCX - Mission

- Can the plasma be centrifugally confined along B?
- Can V’ shear stabilize flute modes?
NMCX - Centrifugal Confinement

Huang et al, PRL, 2001
Flute Interchange with Velocity shear
Artificially Suppressed
Recovery of discharge as Velocity Shear is Restored
Status of the Experiment
Circuit Model
I-V Traces

\[B_{\text{mid}} = 2 \text{ KG} \]

\[R_M = 9 \]

\[V_B = 7 \text{ KV} \]
0-D Model

\[\frac{1}{2} Q_p V_p = \frac{1}{2}(\text{Mass})u \hspace{1em}^2 \]

\text{[stored energy = kinetic energy]}

\[u \approx \frac{V_p}{aB} \]

\text{[average speed inferred from } V_p] \Rightarrow u \approx 100 \text{ km/s}

\text{Assuming } H \text{ plasma} \Rightarrow n \approx \text{few } 10^{20}

MCX Spectroscopy Measurement Layout

- CII, CIII, and CIV lines measured
- Input slit imaged to vertical spot ~ 2.5 cm high
- Gated CCD intensified one D diode array
CIV spectroscopy shows supersonic rotation in red and blue shifts

CIV line at 5801.33
Measured at 550 μsec into the discharge
Integration time = 100 μsec

Average $V_{\text{rotation}} = 89 \pm 5 \text{ km/sec}$
Average $T_{\text{ion}} = 40 \text{ eV} \pm 10 \text{ eV}$

Average $V_{\text{rotation}} = 60 \pm 5 \text{ km/sec}$
Average $T_{\text{ion}} = 40 \text{ eV} \pm 10 \text{ eV}$

Intensity (a.u.)

Wavelength (λ) Å
Rotation is Supersonic, (Weak) Stability Criterion Reached

Stability Criterion for Ideal Interchanges

\[u_j' > (\text{sonic growth rate}) \times (\text{logarithmic factor}) \]

\[\Rightarrow M_s > (a/L)^{1/2} \times (\text{log factor}) \]

Supersonic

\[M_s = \frac{u_j}{(T/M)^{1/2}} \sim 1 - 2 \]
Summary of measured and inferred plasma parameters on MCX

\[B \sim 2 \text{kG} \quad \text{Mirror ratio} \sim 9 \]
\[V_0 \sim 5-10 \text{kV} \]
\[n \sim \text{few} \times 10^{20} \text{ m}^{-3} \quad T \sim 30-50 \text{ eV} \]
\[u_\parallel \geq 100 \text{ km/s} \]
\[M_s \sim 1-3 \quad M_A \sim \text{upto} 0.5 \]
H - mode!

Rotation speed \(H \geq 3 \)
Mach number \(H \sim 3 \)
Confinement time \(H \sim 3 \)

See Poster
Teodorescu et al
What do we know about MHD stability to date?
Voltage across plasma remains steady for 1000’s of MHD instability times

- MHD instability growth time $t_{\text{MHD}} \sim 2 - 20 \text{ ms}$
- Measured momentum confinement time $t_{\text{mom}} \sim 200 \text{ ms}$

- No “major disruptions” \Rightarrow MHD Stable?
Carbon series suggests shear in rotation profile
Interchange instabilities lead to mixing, not catastrophic termination.

Huang et al, PoP, 2004
Radial Doppler Shifts smaller than azimuthal shifts

H - 1ms delay after crowbar
O - 2.5 ms delay

Intensity (a.u.)

Occurences

O mode
H mode

Ion drift velocity (km/s)
Interchange instabilities lead to collapse of density/pressure - i.e., poor confinement time

\[\text{Reynolds \#} \]
\[R = \frac{L}{\Delta_{\text{MHD}}} \sim 1000 \]

\[L \sim a^2/\Delta \]

Rayleigh-Benard Theory =>

turbulent confinement time
\[\sim \Delta_{\text{MHD}} R^{1/3} \]

“Flattening parameter”
\[\frac{<(n'/n) - (n'/n)_{marginal}>_{\text{Laminar}}}{<(n'/n) - (n'/n)_{marginal}>_{\text{Turbulent}}} \sim 50 \]
τ_{mom} can be measured from stored energy or from “free-wheeling”

\[Q_p \Rightarrow C_p = \frac{Q_p}{V_p}\]
\[R_p \quad \frac{V_p}{I_p} \Rightarrow \tau_{mom} \quad \frac{R_p C_p}{I_p}\]

Crowbar

Disconnect $\Rightarrow \tau_{mom}$ measured directly

Crowbar $\tau_{mom} \sim 220 \mu s$

Freewheel $\tau_{mom} \sim 210 \mu s$
Is momentum loss classical or turbulent?

- $\square_{\text{mom}} \sim 200 \, \text{s}$

Classical loss chc

- $\square_{\text{on-ion}} \sim a^2/|q|^2$
- $\square_{|l|} > 100 \, \text{s}$
- $\square_{\text{CX}} \sim (N\square u)^{-1}$

Turbulent loss:

- $\square_{\text{turb}} \sim \square_{\text{MHD}} \, R^{1/3}$

$\Rightarrow R_{\text{class}} \sim 1000$

- Inconclusive, suggestive?
- MHD modes are ideal
Magnetic probes could yield info on wobbles at the edge

\[p + B \frac{\partial B}{\partial \rho} = 0 \]

\[\frac{\partial p}{\partial \rho} \sim p' \frac{\partial r}{\partial r} \]

\[\frac{\partial r}{\partial a} \sim B \frac{\partial B}{\partial \rho} p \]

\[\Rightarrow \frac{\partial r}{\partial a} < 1 \text{ cm} \]
Simulations suggest possibility of localized turbulence and transport barriers

- If flow profiles are parabolic, velocity shear not efficacious at the peak
- Localized instability and turbulence
- Transport barriers
Velocity Shear Stabilization of Z-Pinch: Numerical Experiment

Z-Pinch

=> spontaneously unstable to kinks and sausages

Now, force axial flow, with no slip walls

=> stabilization. Wobbles decrease with increasing Mach #
Z-pinch density profile approaches laminarity with increasing Mach #

(1) is the laminar profile (green).

(2) - (6) are turbulent states (blue) with respective (turbulent) Mach numbers 0.3, 1.4, 2.2, 3.7, 4.8.

DeSouza et al, PoP, 2000
V’ Stabilization: Aspect Ratio

- The system approaches laminar as R increases
- $R=4$

Huang et al, PoP, 2004
SUMMARY

- MCX routinely produces fully ionized, high density, supersonically rotating plasmas

- “H-mode” discovered; H-factors in speed, Mach number, confinement time

- Voltage trace across plasma is steady for up to ~1000 MHD instability times, no major disruptions. Suggestive of stable plasma but does not rule out turbulent convection

- Spectroscopy shows radial Doppler shifts x10 smaller than azimuthal
 => no long-lived large scale wobbles

- Confinement times > x10 larger than MHD times
 => MHD instability “ideal”
 => suggests not strongly turbulent from ideal MHD instability
Assessment of MHD stability and V’ shear - Future Plans

- Magnetic probe arrays
- Multi-chord spectrometer for u[r]
- 18 kV Bank to check stability vs applied voltage (M_s?)
- Confinement time scalings
- Comparison with theory and numerical simulation