MDE Journal Articles - Publications - Wisconsin Plasma Physics Laboratory - UW Madison Physics Department

WiPPL Home - Experiments - Theory Groups- Multi-Institutional Centers
About WiPPL Directory Publications Links WiPPL Schedule
History Gallery Internal
University of Wisconsin Physics Department College of Letters and Science
IEA/RFP Workshops

Research funding includes support from:

Department of Energy

National Science Foundation

By Year:

2014     2012     2011     2009     2008     
2007     2006     2002     


Optimization of magnetic amplification by flow constraints in turbulent liquid sodium, M.D. Nornberg, N. Z. Taylor, C. B. Forest, K. Rahbarnia, E. Kaplan, Phys. Plasmas 21, 055903 (2014).


Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo, E.J. Kaplan, B. P. Brown, K. Rahbarnia and C. B. Forest, Phys. Rev. E 85, 066315 (2012).

Direct Observation of the Turbulent emf and Transport of Magnetic Field in a Liquid Sodium Experiment, K. Rahbarnia, Brown, B. P. and Clark, M. M. and Kaplan, E. J. and Nornberg, M. D. and Rasmus, A. M. and Taylor, N. Z. and Forest, C. B. and Jenko, F. and Limone, A. and Pinton, J.-F. and Plihon, N. and Verhille, G., Astrophysical Journal 759, 80 (6 pp.) (2012).


Reducing Global Turbulent Resistivity by Eliminating Large Eddies in a Spherical Liquid-sodium Experiment, E. J. Kaplan, Clark, M. M. and Nornberg, M. D. and Rahbarnia, K. and Rasmus, A. M. and Taylor, N. Z. and Forest, C. B. and Spence, E. J., Physical Review Letters 106, 254502 (4 pp.) (2011).


Hysteresis cycle in a turbulent, spherically bounded MHD dynamo model, K. Reuter, F. Jenko, C.B Forest, New J. Phys. 11, 013027 (2009).

Wave-driven dynamo action in spherical magnetohydrodynamic systems, K. Reuter, F. Jenko, A. Tilgner, C.B. Forest, Phys. Rev. E 80, 056304 (2009).


A parallel implementation of an MHD code for the simulation of mechanically driven, turbulent dynamos in spherical geometry, K. Reuter, F. Jenko, C.B. Forest, R.A. Bayliss, Comp. Phys. Comm. 179, 245 (2008).

Fluctuation-driven magnetic fields in the Madison Dynamo Experiment, E.J. Spence, M.D. Nornberg, R.A. Bayliss, R.D. Kendrick, and C.B. Forest, Phys. Plasmas 15, 055910 (2008).


Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow, R.A. Bayliss, C.B. Forest, M.D. Nornberg, E.J. Spence, and P.W. Terry, Phys. Rev. E 75, 026303 (2007).


Intermittent magnetic field excitation by a turbulent flow of liquid sodium, M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, C. B. Forest, Phys. Rev. Lett. 97, 044503 (2006).

Measurements of the magnetic field induced by a turbulent flow of liquid metal, M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, and C. B. Forest, Phys. Plasmas 13, 055901 (2006).

Observation of a Turbulence-Induced Large Scale Magnetic Field, E. J. Spence, M. D. Nornberg, C. M. Jacobson, R. D. Kendrick, C. B. Forest, PRL 96, 055002 (2006).


Hydrodynamic and numerical modeling of a spherical homogeneous dynamo experiment, C.B. Forest, R.A. Bayliss, R.D. Kendrick, M.D. Nornberg, R. O'Connell, E.J. Spence, Magnetohydrodynamics 38, 107 (2002).