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ABSTRACT: The uncertainty of electron density and temperature ßuctuation measurements is de-
termined by statistical uncertainty introduced by multiple noise sources. In order to quantify these
uncertainties precisely, a simple but comprehensive model was made of the noise sources in the
MST Thomson scattering system and of the resulting variance in the integrated scattered signals.
The model agrees well with experimental and simulated results. The signal uncertainties are then
used by our existing Bayesian analysis routine to Þnd the most likely electron temperature and
density, with conÞdence intervals.

In the model, photonic noise from scattered light and plasma background light is multiplied
by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from
the ampliÞer and digitizer is added. The ampliÞer response function shapes the signal and in-
duces correlation in the noise. The data analysis routine Þts a characteristic pulse to the digitized
signals from the ampliÞer, giving the integrated scattered signals. A Þnite digitization rate loses
information and can cause numerical integration error.

We Þnd a formula for the variance of the scattered signals in terms of the background and
pulse amplitudes, and three calibration constants. The constants are measured easily under operat-
ing conditions, resulting in accurate estimation of the scattered signalsÕ uncertainty. We measure
F ! 3 for our APDs, in agreement with other measurements for similar APDs. This value is
wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well
using a Gaussian response function. Numerical integration error can be made negligible by using
an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth.
The effect of background noise is also determined.
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1 Introduction and motivation

In this paper, we analyze the sources of statistical uncertainty in the the electron temperature mea-
surements made using a polychromator-based Thomson scattering (TS) system with avalanche
photodiode (APD) detectors. Such TS diagnostics are a widely used and reliable way to determine
the electron temperature and density of laboratory plasmas. The Madison Symmetric Torus (MST)
TS system uses Þlter polychromators with avalanche photodiode (APD) detectors to capture the
scattering spectrum. The analysis code takes the integral of the pulse corresponding to the scat-
tered light in the digitized signal from each detector. The electron temperature and density are
derived by Þtting the scattering spectrum to the integrated signals. For more information on the
MST TS system see [1Ð4].

The main sources of noise in such a system are electronic and photonic noise occurring in
the APD detectors. APD noise has been well-characterized by simple models [5Ð9]. This paper
focuses on how the noise translates into uncertainty in the scattered signals, through the interaction
of the noise sources, the shape of the scattered pulse, the ampliÞer properties, the digitization
rate, and the numerical integration method. The Þnal step, Þnding the uncertainty of the electron
temperature and density based on the scattered signal uncertainty, is already implemented for the
MST TS system using a Bayesian statistical method. [10]
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2 Model of detector system and noise sources

For the complete derivation of this model, refer to the supplementary material. Poisson-distributed
photons are absorbed by the APD, producing primary electrons. The avalanche process multiplies
the number of electrons and also increases the noise. The current from the APD is converted to
an output voltage by an ampliÞer/Þlter. The digitized signals(ti) is numerically integrated over
the scattered signal pulse to give the scattered signalS. These results assume that the integral is
computed by! 2 Þtting of a Ôcharacteristic pulse,Õ produced by averaging many observed pulses, to
the digitized signal to estimate the pulse amplitude. There are three different types of uncertainty
which inßuence the resulting value ofS:

Var(S) = " 2áS2 +
R# 1

tanh(R# 1)
GM FáS+

!
GMFrbg+ v2

electr

"
á#int. (2.1)

The term quadratic inS corresponds to numerical integration error, where" is the relative error
introduced by the integration method. It depends on the integration method, the digitizer sampling
rate, and the shape of the output pulse. It may be reduced by using an interpolated characteristic
pulse (see section3.3).

The linear term arises from the Poisson statistics of the scattered photons,Var(Nph) =
#
Nph

$
.

G is gain of the ampliÞer, in Vás/electron.M is the avalanche multiplication factor of the APD, and
F is the noise enhancement factor [6]. R= Bdigi/ Bamp is the ratio of the digitizer bandwidth to the
ampliÞer bandwidth. The correlation factorR# 1/ tanh(R# 1) expresses the diminishing returns of
increasing the digitizer bandwidth beyond the bandwidth of the ampliÞer.

The constant term contains all the background noise sources, including the background plasma
light (expressed in terms of the output signal voltagerbg) and electronic noisev2

electr. Both contribu-
tions are power spectral densities in V2/Hz, and they are accumulated over the effective integration
time#int, which depends on pulse shape and integration method.

3 Simulation results

Here we compare different aspects of the above analytical results to data from a Monte Carlo
simulation of the same underlying model. In all simulations, photons (pulse and background)
were drawn according to a Poisson distribution at 0.1 ns intervals, the resulting time-series was
convolved with the ampliÞer response function, and the output pulse was Þtted with a characteristic
pulse (average of many output pulses) to Þnd the inferred number of photons. These simulations
do not model the avalanche multiplication process:GMF $ 1.

3.1 Constant signal model

We begin by testing equation (3.1), which gives the variance of the output signals(t) from the
ampliÞer, given a constant source of background light which produces an average output signal
%s(t)&:

Var(s(t)) = GMFBamp%s(t)& (3.1)

The bandwidth is deÞned to be:

Bamp=
%!

0 w2(t)dt
[
%!

0 w(t)dt]2
, (3.2)
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(a) (b)

Figure 1. (a) Response function shapes used in the simulations. The ÔRounded ExponentialÕ has the form
t2e# t/ #. Response functions have#amp= 100 ns in this plot. The ÔDual GaussianÕ is motivated by the MST
TS ampliÞers (section 4.1). (b) The variance ofs(t) obeysVar(s) = GMF %s&áBamp over two orders of
magnitude inBamp. The input signal had%s(t)&= 10 ph/ns.B for the ÔDual GaussianÕ shape was calculated
from the absolute value of the response function.

wherew(t) is the ampliÞer response function. Sample traces were simulated using the ampliÞer
response functions shown in Þgure1a, and the varianceVar(s(t)) was computed. Figure1bshows
that the model agrees with the simulation for all the pulse shapes and over two orders of magnitude
in Bamp.

3.2 Pulse photonic noise

We now verify the relation of the photonic noise from pulsed signals, the linear term in equa-
tion (2.1): Var(S) = R

tanh(R) GMFáS. For this section, the background photon rate in the simula-
tion was very low (0.001 ph/ns) and the pulse arrival time was Þxed, to eliminate numerical error
(" = 0). We used two response functions, ÔACÕ and ÔDC,Õ designed to mimic the behavior of our
system (see section4.1 for details). Figure2 shows that the agreement between simulation and
theory is again excellent, with the variance scaling with the signal amplitude as expected for Pois-
son statistics. We also investigated the dependence of the signal variance on the ratio of digitizer
to ampliÞer bandwidth. The model was derived speciÞcally for an exponential response function
(decaying exponential), and assuming that the input pulse is very broad compared to the response
function. Figure3 shows that the model gives a good estimate of the actual behavior for a variety
of different response function shapes, and for narrow input pulse widths.

3.3 Numerical integration error

We next explore how the quadratic term in equation (2.1), the numerical integration errorVar(S) =
" 2S2, depends on pulse shape and characteristic pulse resolution. The pulse arrival time is allowed
to vary randomly in 0.1 ns steps to produce the integration error. Figure4aillustrates the quadratic
dependence characteristic of integration error. The error" is inversely proportional to the inter-
polation ratioRinterp $ " tdigi

" tchar.pulse
in Þgure4b. The coefÞcient depends rather strongly on the pulse
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Figure 2. Simulated variance for pulse-Þtting
method agrees very well with theoretical prediction.
The scattered light pulse was a Gaussian of width
17.7 ns. The correlation factorR# 1/ tanh(R# 1) ! 1
here due to the high digitization rates. Error bars are
standard error from 10,000 trials.

Figure 3. The ampliÞer bandwidth (determined
from the response function) sets the minimum digi-
tizer bandwidth necessary to achieve photon-limited
uncertainty. The input was a Gaussian pulse (width
20 ns), the digitization rate was 100 MS/s, and the
width of each response function was varied. The
Dual Gaussian response function simulation breaks
down for R< 1.

(a) (b)

Figure 4. (a) The variance of Þtted signal increases quadratically with mean signal amplitude due to numeri-
cal integration error. The sampling period was 100 ns, the input pulse width was 200 ns, and the interpolating
characteristic pulse had a resolution of 1 to 50 ns. The ampliÞer response function was Gaussian with width
10 ns. (b) The relative error" is inversely proportional to the resolution of the characteristic pulse.

shape. The ability to reduce the integration error by interpolated Þtting relaxes a constraint on the
digitizer. The digitization rate may be chosen to (marginally) satisfyBdigi ' Bamp, provided the
pulse is wide enough to be sampled by at least a few digitizer points.

Ð 4 Ð
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(a) (b)

Figure 5. Background light should introduce additional variance to the pulse, proportional to#intáNbg. The
number of photons in the pulse was 1000, the background photon rate was 1 ph/ns and response function
was a 50 ns Gaussian. (a) Plotting the variance against the input or output pulse width shows that variance is
proportional to the input pulse width, although with a coefÞcient not predicted by the analytical results. (b)
Different input pulse shapes share the same slope under the same condtions.

3.4 Background noise

We Þnally investigate the constant term in equation (2.1), the variance produced by background
noise:Var(S)bg = GMF

#
rbg

$
#int, where#int is the width of the input pulse andrbg is the output

voltage corresponding to a constant input light source. The model assumes the input pulse is much
longer than the response time of the ampliÞer, but the MST TS system operates in the regime where
the two time scales are comparable. Thus, we investigated the effect of the ampliÞer response as
well. In analogy with equation (3.2), the width of a functionf (t) was measured as:

# =
[
%!

0 f (t)dt]2
%!

0 f 2(t)dt
. (3.3)

We plotted the variance from the simulation in two ways in Þgure5a: against the input pulse width,
and against the output pulse width. The variance is linear with the input pulse width, in agreement
with theory; however, the slope is about 2.4 times the prediction. Figure5b shows two other pulse
shapes (square, and rounded exponential) share the same slope. This implies that the measure of
the pulse width is consistently small, for unknown reasons.

According to the analytic results, which assumed an input pulse wider than the response func-
tion width, the response function width is irrelevant in calculating the effective background inte-
gration time. As illustrated in Þgure6, simulations show that when the pulse is narrower than
the response function, the response function width determines the background-induced variance.
An interesting feature of the pulse-Þtting method of integration is the breakdown at low signal-to-
noise ratio. We illustrate this for the single and dual Gaussian pulse shapes by varying the pulse
amplitude while holding the background photon rate Þxed. Figure7 shows that when the pulse
arrival time is allowed to vary, the variance of the Þtted signal jumps up signiÞcantly for low signal
amplitudes. This is due to the loss of information about the location of the pulse in time.

Ð 5 Ð
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Figure 6. The background-induced variance is also
proportional to the width of the response function.
The input pulse was a 1.0 ns Gaussian. The back-
ground photon rate was 10 ph/ns, with 1000 photons
in each pulse.

Figure 7. When the SNR of the data is low, the
pulse location is not known precisely, and the Þt
quality degrades. Fixing the arrival time removes
this behavior. The input pulse is a 10 ns Gaussian,
the ampliÞer response function widths are all 50 ns,
and the background rate is 10 ph/ns. The effective
integration times are 39 ns (Single Gaussian) and
29 ns (Dual Gaussian).

4 Experimental results

In this section, we apply the model developed above to one of our reference APD detectors which
has been absolutely calibrated. The MST TS diagnostic features C30956E Photodiodes from EC&
G (formerly RCA). The ampliÞers attached to them have two outputs: a directly coupled (DC) out-
put channel which was intended for measuring the background plasma light level for the purposes
of error analysis, and a high-pass-Þltered (AC) output channel. The high-pass is accomplished by
using a 100 ns delay line and a differential ampliÞer to cancel the background plasma light contri-
bution on a fast time scale. We digitize the DC output at 100 MS/s, and the AC output at 1 GS/s.
Since the bandwidth of both digitizers is more than sufÞcient, given the 25 MHz bandwidth of the
APD/ampliÞer system, we are able to obtain scattered signal amplitudes from both outputs.

4.1 AC and DC response functions

The AC and DC response functions are characterized by the correlation function of the output,

$(t) =
Cov[s(t(),s(t( + t)]

Var[s(t()]
=

%t
0 w(t( # t)w(t()dt(

%t(

0 w2(t()dt(
(4.1)

The correlation functions for the AC and DC outputs with a constant light source input were ob-
tained experimentally. The correlation functions were reproduced in simulations using single and
dual Gaussian response functions, as shown in Þgure8. The model AC and DC response functions
were used for realistic simulations of the MST TS system.

Ð 6 Ð
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Figure 8. AC and DC correlation functions from ex-
perimental data and from simulations using model
response functions. The model response functions
were of type Single and Dual Gaussians as deÞned
previously, with widths 42.5 and 85 ns respectively.
The AC model had a delay of 100 ns between the
positive & negative portions.

Figure 9. Experimental data for AC and DC chan-
nel signal variances produced by constant input light
source.

4.2 Constant signal model

We have also tested the dependence of theVar(s(t)) against%s(t)&using real data taken using a
steady CW light source. From equation (3.1) our theoretical expectation for the DC output is that:

Var(s(t)) = GMFBamp%s(t)&.

However, the AC output is always zero under constant illumination, due to the symmetry of the
response function. Therefore, we have plotted the variance of both the AC and DC signals against
the DC mean signal in Þgure9. The slope of the DC ouput corresponds toGDCMFBDC. We expect

the AC slope to beG
2
ACBAC

G2
DCBDC

times the DC slope. The intercept of each corresponds tov2
electrBamp. The

AC slope is 2.32 times the DC slope.BAC/ BDC = 1/ 2 according to the modeled response functions.
We measuredGAC/ GDC = 2.15 for a pulse. This yields a value of 2.31 for the ratio of the slopes,
which is almost exactly what we observed.

F may be estimated from measured quantities. We inferredGDC ! 3.3± .2 ) 10# 15 Vás/e
from the absolutely calibrated gainGtot = GM% and an assumed value of%= 0.8 at 940 nm,
using a measuredM ! 90± 1. The DC ampliÞer bandwidth was estimated to be 23.5 MHz using
equation (3.2) on the ÔDCÕ model response function. Combining with the value of&Var(s)

&s = 2.29)
10# 5V from Þgure9, the resulting value ofF = 3.2 is near the values calculated for similar APDs
by other Thomson scattering researchers [11, 12].

M and F are expected to be independent of wavelength for this type of APD which has a
Òreach-throughÓ structure [13]. In order to verify this, the quantityVar(s(t)) / %s(t)&= GMFBamp

was measured for constant input light signals using a monochromator with an incandescent lamp
source. This quantity varied less than 5% over a range of wavelengths from 700 to 1064 nm.

Ð 7 Ð
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(a)

Best Fit " GM F #int

unitless mVáns ns

continuous 0.29% 1.08 32

1 ns 0.29% 1.08 37

10 ns 1.41% 1.00 38

trapezoidal 0.45% 1.06 292

AC 1 ns 0.24% 1.29 67

(b)

Figure 10. (a) Scaling of the integral variances with the integral mean, demonstrating the general quadratic
form predicted by the model (b) Best-Þt coefÞcients to the curves plotted in (a).

4.3 Pulsed signal model

If the digitizer bandwidth is large, so that the correlation correction factorR# 1/ tanh(R# 1) is unity,
and there is no background light, equation (2.1) reads:

Var(S) = " 2áS2 + GMFáS+ v2
electrá#int

We tested this experimentally by varying the input pulse amplitude and integration method. We
used a very reproducible pulsed diode source at 940 nm wavelength and 20 ns pulse length for
these measurements. Amplitude ßuctuations from the pulsed light source can result in a quadratic
term which could obscure the integration error" , so having a stable source is important. The
linear term gives us a second measurement ofGMF under pulsed operation, as opposed to the CW
results in the preceding section. We also usev2

electr to infer#int from the constant term. We used four
different integration methods for the DC output: trapezoidal rule, a standard characteristic pulse
Þtting method (10 ns time resolution); an interpolated pulse-Þtting method (1 ns time resolution);
and an analytic pulse Þtting method. We also used 1 ns resolution pulse Þtting on the AC output.

The results of the experiment are shown in Þgure10a, whereVar(S) is plotted againstS.
Table10b displays the best Þt to the parameters in the model. The AC value of GMF has been
corrected for the AC gain so it is comparable to the DC values. Notice that all DC methods agree on
the value ofGMF, but the AC channel has a larger value despite the gain correction. This must be
due to error in measuring the AC or DC gain, sinceM andF must be the same since both channels
share the same APD. The Þtting methods have a much smaller effective integration time compared
to the trapezoidal quadrature, since the quadrature was performed over a 320 ns window. The
values of#int are rather smaller than expected given the width of the response functions. However
this is not a sensitive test of the background contribution since the background is not varied. Fitting
the characteristic pulse with 10 ns resolution to the DC channel displays more numerical error than
the other methods, although it only becomes signiÞcant at large amplitudes (beyond the typical
operating regime of our system). In the Þnal analysis, the AC Þtting method performs slightly
worse than the interpolated DC Þtting. The AC integration time is longer, which makes it more

Ð 8 Ð
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(a) (b)

Figure 11. (a) Electron temperature as a function of discharge time, for 4 selected radial points. The
discharge starts att = 0 ms, and the improved conÞnement begins at 10 ms, and ends with a violent collapse
at 19 ms. (b) The radial proÞle of electron temperature at 4 selected time points for the same shot.

sensitive to background noise (electronic or photonic) and it also has a largerGMF which makes
it more sensitive to photonic noise in the pulse.

In section4.2 we were able to ÞndGMF using CW illumination, instead of a pulsed light
source. We obtained for the DC channelGMF = 0.95 mVáns for the CW and 1.08 mVáns from
the pulsed case, showing 14% disagreement, which is reasonable given uncertainties. For the AC
channel, the CW value ofGMF = 0.88 mV áns is 32% smaller than the pulsed result, 1.29 mVáns.
The AC channel results required more estimated quantities to obtain, which could explain the larger
discrepancy.

5 Typical electron temperature uncertainties

Under typical operating conditions (laser energy of 2 Joules/pulse and moderate plasma back-
ground light) MST Thomson Scattering obtains average uncertainties of 10Ð15%, with best values
of 5% or lower. Figure11 shows data obtained from a recent improved conÞnement discharge,
illustrating the scale of the uncertainties as compared to the temporal and spatial variations of
the mean temperature throughout a discharge. The error bars represent 1á' conÞdence interval
around the most probable temperature, found using the Bayesian procedure outlined in [10]. The
temperature uncertainties are computed using the uncertainties in the scattered signals, which are
themselves estimated using the model developed here, with coefÞcients determined from calibra-
tion. The MST TS system is not calibrated for absolute electron density measurements, so we have
not considered the uncertainty in the electron density.

6 Conclusion

We have developed a simple but comprehensive model of all identiÞed sources of uncertainty in the
MST TS system, and how these uncertainties propagate to the uncertainty in the scattered spectrum.
The model incorporates integration error, photonic noise from the scattered signal, and electronic

Ð 9 Ð
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and photonic background noise. The noise becomes correlated due to the ampliÞer response func-
tion, and this is taken into account, along with digitization effects. The model is applicable to both
quadrature and pulse-Þtting methods for integration of the scattered signal. We have applied this
model to experimental data gathered about our system, demonstrating that the model Þts the data
well and produces calibration coefÞcient values which are reasonable given prior knowledge.

Future efforts may be directed toward a more comprehensive model of the effect of the back-
ground noise on pulse-Þtting, especially in the case where the plasma background light ßuctuates.
It would be worthwhile investigating experimentally the variance of the Þtted pulse as a function
of background light level, since this has not yet been done.
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