Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas

Daniele Bonfiglio1 \\
with S. Cappello1 and L. Chacon2 \\
1Consorzio RFX, Italy 2ORNL, Tennessee

52nd Annual Meeting of the APS Division of Plasma Physics \\
November 8-12, Chicago
Nonlinear verification benchmark of the two codes

- Mandatory step after numerical tools upgrade at RFX
 - From the visco-resistive MHD code SpeCyl
 - [S. Cappello & D. Biskamp, NF 1996]
 - …to the extended MHD code PIXIE3D
 - [L. Chacon, PoP 2008]

- Motivated by the need for RFP extended MHD modeling
In the past, the nonlinear 3D visco-resistive MHD model:
- Provided the theoretical discovery of the RFP helical self-organization
- Was instrumental to its experimental study

Extended MHD modeling of the RFP is needed for:
- Physical understanding
 - Need to address the interplay between MHD & transport:
 - Better description of momentum transport (than ν_η-MHD)
 - Particle & energy transport
 - Besides of two fluid, toroidal effects and so on
- Predictive (quantitative) capability
 - As a long term goal
 - Strong emphasis on Verification & Validation of numerical tools
SpeCyl:
- Nonlinear visco-resistive 3D MHD in a cylinder

PIXIE3D:
- Extended physics:
 - Finite beta
 - Temperature equation
 - Two fluid effects
- General curvilinear geometry:
 - Toroidal effects
SpeCyl vs PIXIE3D: discretization schemes

<table>
<thead>
<tr>
<th>Code</th>
<th>Geometry</th>
<th>Spatial discretization</th>
<th>Time discretization</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpeCyl</td>
<td>3D (cylindrical)</td>
<td>Finite differences (r)</td>
<td>Semi-implicit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spectral (θ, z)</td>
<td></td>
</tr>
<tr>
<td>PIXIE3D</td>
<td>3D (curvilinear)</td>
<td>Finite volume</td>
<td>Fully implicit</td>
</tr>
</tbody>
</table>

Fully implicit scheme:

- $\Delta t \cong \tau_A$ allowed without accuracy degradation
Excellent scalability properties, close to optimal scaling:

- Increasing the problem resolution and the number of processors by the same factor
- Computation time remains nearly constant up to 4092 processors
Successful nonlinear verification benchmark performed:

- In the common limit of visco-resistive MHD in a cylinder

Helical (2D) symmetry:
- Tokamak-like & RFP configurations

Full 3D case:
- RFP configuration: MH – QSH – SH regimes

Details in:
- [D. Bonfiglio, L. Chacon & S. Cappello, PoP 2010]

Some examples in next slides:
- Look at the differences between black and red curves
Temporal evolution of magnetic energy by SpeCyl (—) and PIXIE3D (—).

- m=1, n=-8 helical symmetry: SHAx

\[(a) \quad 2\text{D RFP, } S=3 \times 10^4, \ P=300, \ m=1, \ n=-8\]
Verification benchmark: (2D) helical Tokamak

Temporal evolution of magnetic energy by SpeCyl (—) and PIXIE3D (―).

- \(m=1, n=-1 \) symmetry:
 - Stationary “snake” equilibrium
 - \(S=3 \times 10^4, P=30 \)
 - Sawtooth oscillations
 - \(S=3 \times 10^5, P=30 \)
Temporal evolution of magnetic energy by SpeCyl (—) and PIXIE3D (—).

- $m=1$, $n=-8$ helical symmetry: SHAx

(b) 3D RFP, $S=3 \times 10^4$, $P=100$, $128 \times 32 \times 256$
PIXIE3D: good accuracy with large Δt (helical RFP)

Temporal evolution by PIXIE3D with $\Delta t=0.01$ (—) and large Δt (—).

$\Delta t = 1 \, \tau_A$

$\Delta t = 4 \, \tau_A$

$\Delta t > \gamma^{-1/2}$

$\Delta t = 2 \, \tau_A$

$\Delta t = 8 \, \tau_A$
Conclusion & perspectives

Successful benchmark concluded between 3D MHD codes

Now ready to extend RFP self-organization studies with extended physics & geometry effects:

- Self-consistent temperature
- Toroidal geometry effects
- Two fluid effects

- See poster TP9.00035 by L. Chacon on Thursday morning