Impurity expulsion in an RFP plasma and the role of temperature screening

S. T. A. Kumar,
D. J. Den Hartog, R. M. Magee, G. Fiksel, D. Craig

Department of Physics, University of Wisconsin-Madison,
Madison, Wisconsin, USA
Impurity sources

- Plasma-wall interaction
- Radiative edge
Impurity sources

- Plasma-wall interaction
- Radiative edge

Global observations

- Impurity accumulation
 \[
 \frac{n_z(r)}{n_z(0)} = \left[\frac{n_i(r)}{n_i(0)} \right]^Z
 \]

- Transport generally anomalous, but close to neo-classical for high confinement modes
Introduction: Impurities in fusion plasma

Impurity sources

- Plasma-wall interaction
- Radiative edge

Global observations

- Impurity accumulation
 \[
 \frac{n_z(r)}{n_z(0)} = \left[\frac{n_i(r)}{n_i(0)} \right]^Z
 \]
- Transport generally anomalous, but close to neo-classical for high confinement modes

Detrimental effects

- Fuel dilution - reduction of fusion power
- Radiation loss - line radiation (edge) Bremsstrahlung (core)
- Radiative collapse
- Contribution to resistivity - shaping current density profile
Impurity sources in the Madison Symmetric Torus
Aluminum wall, graphite limiters, boronization

- 5 cm thick aluminum wall
- Graphite limiters
- Ceramic tiles
- Recent boronization efforts

Intrinsic impurities are Al, C, O, B
Improved confinement deuterium discharges

\(I_p \sim 400 \text{ kA}, \quad n_e \leq 1 \times 10^{19}/\text{m}^3 \)

Time Evolution

- **Plasma Current**
 - kA vs. Time (s)
 - \(I_p \) peaks at \(\sim 400 \text{ kA} \)

- **Electron Density**
 - \(n_e \) in \(\times 10^{19}/\text{m}^3 \)
 - \(n_e \) drops as \(I_p \) decreases

- **Magnetic fluctuations**
 - Gauss over Time (s)
 - Improved confinement indicated by lower fluctuations

Radial Profiles

- **\(n_e \)**
 - Electron density profile over \(\rho \)
 - Smooth profile indicative of improved confinement

- **\(T_e \)**
 - Electron temperature profile over \(\rho \)
 - Decreasing temperature as \(\rho \) increases

- **\(T_i (C^+6) \)**
 - Ion temperature profile over \(\rho \)
 - Similar to \(T_e \) trend
CHarge Exchange Recombination Spectroscopy (CHERS)

- CVI emission at 343.4 nm
- Simultaneous background measurement enables high temporal resolution (up to 100 kHz)
- Spectrometer calibrated for radiant sensitivity

[Diagram showing experimental setup with MST vessel, 50 keV H beam, CVI emission at 343.4 nm, and beam views.]
Radial profile and time evolution of C^{+6} density hollow profile, sharp edge gradient, expulsion from the core

- Slow decay of core impurity density concurrent with slow increase at the outer region

- Sharp C^{+6} gradient consistent with T_e gradient - barrier formation?
Impurity transport is governed by

\[\frac{\partial n_z}{\partial t} + \nabla \cdot \Gamma = S \]

For improved confinement,

\[\nabla \cdot \Gamma = -\frac{\partial n_z}{\partial t} \]

Radial impurity flux,

\[\Gamma_r = -D \frac{\partial n_z}{\partial r} + v_r n_z \]

\[\frac{\partial n_z}{\partial r} = \frac{v_r}{D} n_z + \frac{\Gamma_r}{D} \]
Impurity transport is governed by

\[\frac{\partial n_z}{\partial t} + \nabla \cdot \Gamma = S \]

For improved confinement,

\[\nabla \cdot \Gamma = -\frac{\partial n_z}{\partial t} \]

Radial impurity flux,

\[\Gamma_r = -D \frac{\partial n_z}{\partial r} + v_r n_z \]

\[\frac{\partial n_z}{\partial r} = \frac{v_r}{D} n_z + \frac{\Gamma_r}{D} \]

- \(\tau_{c+6} \sim 31 \text{ms at } \rho \sim 0.016 \)
- \(\sim 41 \text{ ms at } \rho \sim 0.371 \)
- \(D \sim 1.6 \text{ m}^2/\text{s} \) (close to classical)
- \(v_r \sim 1.0 \text{ m/s} \) (Positive, Outward)
$^{\alpha+6}$ ions are highly collisional in MST

- Radial impurity flux \rightarrow Classical $+$ Pfirsch-Schlüter contributions
1. Classical

\[\Gamma_{cl} = \frac{\nu_i \rho_i^2 n_i}{2Z} \left[\frac{\partial \ln P_i}{\partial r} - \frac{\partial \ln P_z}{Z \partial r} - \frac{3\partial \ln T_i}{2\partial r} \right] \]

2. Pfirsch-Schlüter

\[\Gamma_{PS} = \frac{q^2 \nu_i \rho_i^2 n_i}{Z} \left[K \left(\frac{\partial \ln n_i}{\partial r} - \frac{\partial \ln n_z}{Z \partial r} \right) + H \left(\frac{\partial \ln T_i}{\partial r} \right) \right] \]

- \(K \) and \(H \) depends on impurity concentration and main ion collisionality. Typical values are 1 and -0.5 respectively.
Equilibrium impurity density profile

1. Classical

\[
\frac{n_z(r)}{n_z(0)} = \left[\frac{n_i(r)}{n_i(0)} \right]^Z \left[\frac{T_i(r)}{T_i(0)} \right]^\frac{-Z}{2} - 1
\]

- \(\nabla n_i \) leads to accumulation, \(\nabla T_i \) leads to expulsion ("screening")

2. Total (P-S + Classical)

\[
\frac{n_z(r)}{n_z(0)} = \left[\frac{n_i(r)}{n_i(0)} \right]^Z \left[\frac{T_i(r)}{T_i(0)} \right] \gamma
\]

\[
\gamma = \frac{-Z - 2 + 4q^2 HZ}{2 + 4q^2 K}
\]
Excellent matching with experimental profile
Transport dominated by classical flux

• Impurity concentrations (Al, C, B, N, O) scaled to get $Z_{eff}(0) \sim 4.5$

• Temperature equilibration assumed

• n_i self-consistently calculated starting from n_e & impurity profiles

• Pfirsch-Schlüter contribution is negligible as expected

Impurity profile is determined by the temperature gradient -

“Temperature screening effect"
Summary

- Radial profile of impurities is clearly hollow in the improved confinement discharges in MST
- Impurity expulsion from the core of the plasma is observed
- Radial profile well explained by classical transport: Temperature screening responsible for the hollow profile, as \(n_i \) profile is flat

First experimental observation of classical impurity ion confinement in the RFP