3D magnetic fields and plasma flow in helical RFX-mod equilibria

Paolo Piovesan

in collaboration with D. Bonfiglio, F. Bonomo, M. Gobbin, L. Marrelli, P. Martin, E. Martines, B. Momo, L. Piron, A. Soppelsa, P. Zanca, B. Zaniol, and the RFX-mod team / Consorzio RFX, Padova, Italy

52nd Annual Meeting of the APS Division of Plasma Physics
Chicago, Illinois, USA, November 8th-12th, 2010
Background: self-organized helical equilibria

- RFX-mod is exploring for the first time high plasma currents up to 2MA
- At high current a helical equilibrium with an electron internal transport barrier spontaneously forms [R. Lorenzini et al. 2009 Nature Phys. 5 570]

Flux surfaces from constant-p_e contours

![Flux surfaces](image1.png)

ITB in electron temperature

![ITB graph](image2.png)
Outline

- Helical RFP equilibria sustained by external 3D magnetic fields
- Helical flow and possible effects on ITB
- 3D magnetic fields as a knob to change the flow profile
- Conclusions and future work

192 active coils independently controlled
An almost stationary helical equilibrium can be sustained by imposing a finite $m=1/n=-7$ $B_r(a)$ at the edge through magnetic feedback.

Important for helical divertor operation [E. Martines et al. 2010 NF 50 035014]
Flow measurements in helical states

- Multi-chord passive Doppler spectroscopy of CV and BV ions was used to determine the $m=1$ helical flow pattern.
Flow measurements in helical states

- Multi-chord passive Doppler spectroscopy of CV and BV ions was used to determine the $m=1$ helical flow pattern

The local $1/-7$ $B_r = b_{r,1,-7} \cos(\theta_d - 7\phi_d + \Phi_{1,-7})$ correlates with the $m=1$ flow
Flow measurements in helical states

- Multi-chord passive Doppler spectroscopy of CV and BV ions was used to determine the $m=1$ helical flow pattern.
A global helical flow forms

- 2D m=1 flow pattern reconstructed on a poloidal cross-section by fitting all lines of sight
- 2D $m=1$ flow pattern reconstructed on a poloidal cross-section by fitting all lines of sight
- The flow pattern resembles that obtained in nonlinear MHD simulations of single helicity states (SpeCyl code)
ITBs form where q and the flow shear (10^4-10^5s$^{-1}$) are maximum, with strong similarity with tokamak and stellarator results.

[M. Gobbin et al., submitted to PRL]
Nonlinear MHD simulations with external 3D fields

- Also in nonlinear MHD simulations the shear flow peaks near the q maximum
- and moves outward as the $1/-7 b_r(a)$ is increased
- External 3D magnetic fields may be used to improve ITBs
External 3D fields affect the flow profile

- External 3D magnetic fields modify the flow profile also in the experiment.
- A 50% increase in the $m=1$ flow inside the ITB is observed.
- Possible beneficial effects on ITB, dynamo, error field screening, to be tested in near future experiments.
Conclusions and future work

- External 3D magnetic fields allow to sustain and control helical RFP equilibria
- A global helical flow forms, which has probably an effect on ITB formation
- 3D magnetic fields can be used to modify the flow profile
- … and possibly to optimize ITBs in near future experiments

- Role of ambipolar electric fields being investigated with ORBIT and DKES+PENTA codes [M. Gobbin’s invited talk on Monday]
- Including MHD and ambipolar effects in a single simulation is a challenging work, but it could be important to understand and optimize this schenario