Motivation & Introduction

The Direct-Brightness method applies the brightness ratio to tomographic reconstructions of emissivity:

-
 \[\frac{I_e}{I_e + I_T} \]

The Direct-Brightness ratio compares well to Thomson Scattering measured temperatures.

Discussion

- Temperature measurements are being investigated to form a quasi-single-helicity (QSH) or single-helical-axis (SHAx) state.

Structure Measurements

- Plasmas with helical magnetic structure can be investigated.

Phases with helical magnetic structure can be investigated

- In MGT, phases at high current and helical parameter tend to be in a remnant state, so the helical structure is re-introduced.
- Density and current perturbations have been observed with stochasticity and periodicity.
- Are there temperature structures associated with these magnetic structures?

Background: Using SXR Bremsstrahlung Emission to Measure Electron Temperature

- Double-Foil Technique Uses a Ratio to Calculate Te

\[\frac{I_e}{I_e + I_T} = \frac{f_e(E) dE}{f_e(E) dE + f_T(E) dE} \]

\[\frac{I_e}{I_e + I_T} = \frac{f_e(E) dE}{f_e(E) dE + f_T(E) dE} \]

Temperature measurements with the Direct-Brightness method are comparable to those measured with Thomson scattering.

- Spatial profiles from measurement and modeling are correlated.
- Correlation between measurement and modeling aids in understanding the connection between modeling and measurement.

Structure Measurements

- Plasmas with helical magnetic structure can be investigated.

Phases with helical magnetic structure can be investigated

- In MGT, phases at high current and helical parameter tend to be in a remnant state, so the helical structure is re-introduced.
- Density and current perturbations have been observed with stochasticity and periodicity.
- Are there temperature structures associated with these magnetic structures?

Discussion

- Temperature measurements are being investigated to form a quasi-single-helicity (QSH) or single-helical-axis (SHAx) state.