As the number of \(m=0 \) modes is reduced the plasmoid instability can accelerate reconnection. Reconnection time is much faster than Sweet-Parker that is well modeled by single fluid resistive MHD.

Plasmoid Like Structures Seen in MST and Drss Simulations
- Truncating the \(m=0 \) mode spectrum increases the sawtooth duration.
- Multiple reconnection pathways generate complex island structures at reversal surface.
- Structure is topologically similar to "plasmoid" type instabilities that occur during magnetic reconnection and lead to enhanced current flow rate.
- Similarly, sawtooth crash duration scales with number of allowed \(m\) modes.

Can Now Explore Ion Acceleration with RIO
- RIO is a novel means for heating, magnetic field line and chassis experiences.
- Particle tracer computes the full particle orbit.
- Conducting fluctuations and electric field from Debs input.
- Allows the exploration of ion acceleration due to intrinsic electric field.
- Collateral and transverse can be included.
- Electric drag, pitch angle scattering and shape exchange taken into account.
- Guides need to determine magnetic diffusion and ion acceleration.

Debs Reproduces the Observed Equilibrium Evolution
- The resistivity profile is fixed to have the same
 - resistance in the core region for all cases.
- Sensitivity of the resistivity profile to the neutralized magnetorotational instability is accounted for.
- The equilibrium quantities are ensemble averaged.
- The ensemble averaged experimental data is compared to ensemble averaged experimental data.

Sawtooth Crash Duration Asymptotes to MST Value of 50\(\mu \)s
- Sawtooth crash duration in MST is the reference data.
- The number of \(m\) modes is varied from Debs output.
- The sawtooth duration in MST is compared to the number of \(m\) modes.

Motivation
- The equilibrium quantities are an intrinsic feature of the equilibrium.
- These quantities are in good agreement with measured profiles of many equilibrium.
- The equilibrium quantities can be measured.
- The equilibrium quantities are
 - self-consistent with the experimental data.
- The equilibrium quantities are
 - used to determine magnetic diffusion and ion acceleration.

Conclusions
- DEBS Reproduces the Observed Equilibrium Evolution
- Sawtooth evolution of \(|n|\leq10\) case from Debs
- Sawtooth evolution of \(|n|\leq4\) case from Debs
- Sawtooth evolution of \(|n|\leq10\) case from Debs
- Sawtooth evolution of \(|n|\leq4\) case from Debs
- Sawtooth evolution of \(|n|\leq10\) case from Debs
- Sawtooth evolution of \(|n|\leq4\) case from Debs
- Sawtooth evolution of \(|n|\leq10\) case from Debs
- Sawtooth evolution of \(|n|\leq4\) case from Debs
- Sawtooth evolution of \(|n|\leq10\) case from Debs
- Sawtooth evolution of \(|n|\leq4\) case from Debs
- Sawtooth evolution of \(|n|\leq10\) case from Debs