The dominant magnetic fluctuations in the reversed field pinch arise from large scale tearing instabilities, but a broadband spectrum is observed. Recent measurements in MST suggest that the magnetic fluctuations in MST are in equipartition. Bi-spectral analysis techniques are used to identify the frequency range over which the power in magnetic fluctuations becomes dominant at high frequencies. The cross-coherence between density and magnetic fluctuations simultaneously in the edge plasma region. While magnetic fluctuations dominate the power spectrum in the plasma edge a few frequencies, electric field fluctuations become dominant at high frequencies. The cross-spectra between electric and magnetic fluctuations peak near the frequency where the fluctuation spectrum is dominated by magnetic fluctuations. The cross-coherence spectra between density and magnetic fluctuations are strongly non-monotonic among electromagnetic fluctuations. Additionally, the non-linear relationship between the coherences and ratios of the fluctuation amplitudes may help illuminate the nature of these plasma fluctuations. MST and DIII-D support this work.

Conclusions

- Anisotropic magnetic and electrostatic turbulence has been observed in the edge of MST.
- Magnetic fluctuation spectra dominate at low frequencies (approximately 10 kHz). Electromagnetic fluctuation spectra dominate at high frequencies (megahertz).
- There is a secondary peak near 100 kHz in the coherence between the B- and the component of the electric field parallel to the equilibrium field.
- The frequency band secondary peak occurs near the frequency at which density fluctuations are observed in MST. The coherence near 100 kHz is also observed in DIII-D. This peak indicates a wave mode instability being excited in this frequency range.

Fluctuation Coherences

- There is a peak in the coherence between the electric field and magnetic field near tearing mode frequencies.
- A secondary peak appears near 100 kHz in the coherence between the electric field and the component of the electric field parallel to the equilibrium field.
- Sharp Alfven waves are likely ruled out since this peak is strong in coherences involving the fluctuating B component parallel to the equilibrium field.
- The frequency band secondary peak occurs near the frequency at which density fluctuations are observed in MST. The coherence near 100 kHz is also observed in DIII-D. This peak indicates a wave mode instability being excited in this frequency range.

Statistical analysis of broadband electrostatic and magnetic turbulence in the MST reversed field pinch

D.J. Thuecks, A.F. Almagri, J.S. Sarff, P.W. Terry (UW-Madison)

Abstract

Electromagnetic fluctuations in MST are in equipartition. Bi-spectral analysis techniques are used to identify coherences between density and magnetic fluctuations simultaneously in the edge plasma region. Magnetic fluctuations dominate the power spectrum in the plasma edge a few frequencies, electric field fluctuations become dominant at high frequencies. The cross-spectra between electric and magnetic fluctuations peak near the frequency where the fluctuation spectrum is dominated by magnetic fluctuations. The cross-coherence spectra between density and magnetic fluctuations are strongly non-monotonic among electromagnetic fluctuations. Additionally, the non-linear relationship between the coherences and ratios of the fluctuation amplitudes may help illuminate the nature of these plasma fluctuations. MST and DIII-D support this work.

Motivations

- Turbulence is present both in laboratory experiments and space physics environments.
- Turbulence is an important consideration in fusion research.
- Many theoretical models exist that describe turbulence for different environments, but more experimental data is needed to compare to these models.

Turbulent Spectra

- In MST, power is deposited in tearing modes at low frequencies and low wave numbers.
- The magnetic spectrum is characterized by an exponential low-slope region. This represents the loss of energy through an external process (e.g., energy from magnetic fluctuations being transferred to the heating of minority ion species).

Previous work highlights

- Measurements made at 8 cm
- Fluctuation power is anisotropic for B- and E-fluctuations, as expected when a strong guide field is present.
- The anisotropy alignment tracks the magnetic field direction, indicating locally resonant modes.
- Black line corresponds to linear Green horns indicating equilibrium magnetic field direction.

Electrostatic Transport Probe

- An inductive probe is used to monitor fluctuations in floating potential, and three dimensional vector external to the plasma.
- Measurements are restricted to the edge region (r/a<0.7) of low-current (0.01) MST plasma in order to ensure plasma stability.
- The measurements are shown as a function of frequency.

Energy partition

- A similar peak can be seen in the coherence between density and floating potential fluctuations. A phase difference that lies between 0 and π/2 could be an indicator of drift wave turbulence.

Conclusions

- Anisotropic magnetic and electrostatic turbulence has been observed in the edge of MST.
- Magnetic fluctuation spectra dominate close to zero frequencies and electromagnetic fluctuation spectra dominate at high frequencies (megahertz).
- There is a secondary peak near 100 kHz in the coherence between the B- component of the electric field parallel to the equilibrium field.
- High-frequency coherent peaks occur at small positive toroidal wave numbers (wavenumbers) but electrostatic fluctuation power dominates at high frequencies (wavenumbers).
- Anisotropic magnetic and electrostatic turbulence has been observed in the edge of MST.
- Magnetic fluctuation spectra dominate close to zero frequencies and electromagnetic fluctuation spectra dominate at high frequencies (megahertz).
- There is a secondary peak near 100 kHz in the coherence between the B- component of the electric field parallel to the equilibrium field.