Density and β limits in the Madison Symmetric Torus Reversed-Field Pinch

K.J. Caspary
On behalf of the MST Team
Outline

• Motivation and Key Results
• Overview of Experimental Hardware
 – The RFP and MST
 – Pellet injection fueling on MST
• High β Experiments (Pellet fueling + Improved Confinement)
 – Ohmically heated experiments
 – Experiments with NBI heating
• Density Limit Experiments
 – Pellet triggered terminations
 – Impact of reversal
Motivation and Key Results

What mechanism limits β on the RFP?

- Pellet fueling of improved confinement discharges
 - Scans density, temperature, Ohmic heating power
- Electron β remains constant
- Strong scaling of magnetic activity
- Additional NBI heating achieves higher β
 - Due in part to fast ion population

What governs the density limit on MST and the RFP?

- Develop pellet fueling technique to study density limit
- Establish density limit scaling up to 600kA
- Explore the role of edge reversal and $m=0$ modes on limit
 - Higher density limit in reversed discharges
- Density up to twice the limit in improved confinement experiments
The Reversed Field Pinch (RFP)

- $B_\theta \sim B_\phi$ with B_ϕ reversing direction in the edge
- $q < 1$, tearing modes resonant
- High shear, high β ($> 10\%$)
 - Record β of 26% achieved with pellet fueling
The Madison Symmetric Torus (MST)

\[R = 1.5 \text{ m} \]
\[a = 0.5 \text{ m} \]
\[I_p = 200 - 600 \text{ kA} \]
\[|B| = 0.2 - 0.6 \text{ T} \]
\[n_e < 1 \times 10^{20} \text{ m}^{-3} \]
\[T_e, T_i < 2.0 \text{ keV} \]
MST's Pellet Injector Provides Unique Capabilities

Collaboration with ORNL pellet fueling group
4-barrel pipe gun injector
Flexible pellet hardware

- 1.0 – 4.0* mm diameter
- Particle Content $10^{20} - 10^{21}$
- $v_{\text{pellet}} = 100 - 1200 \text{ m/s}$
Outline

• Motivation and Key Results
• Overview of Experimental Hardware
 – The RFP and MST
 – Pellet injection fueling on MST
• High β Experiments (Pellet fueling + Improved Confinement)
 – Ohmically heated experiments
 – Experiments with NBI heating
• Density Limit Experiments
 – Pellet triggered terminations
 – Impact of reversal
Improved Confinement Achieved with Pulsed Parallel Current Drive (PPCD)

- Inductively drives current in the plasma edge to flatten the current profile, reducing the tearing mode drive
- Limited to low density (< 1x10^{19} m^{-3}) with edge fueling alone
The Recipe for Achieving High β on MST

- Pellet injection prior to the onset of PPCD
- Density increased while $m = 0$, $m = 1$ activity reduced
- T_e Increases
- T_i increases along with T_e (only observed at high density)
High β Region of Interest from 17-20 ms

- T_e measured at 2 kHz
- Density and other quantities averaged over 0.5 ms window
- β peaks at the end of the improved confinement period
Saturation of β_e at High Density

- Estimate of electron β obtained from experimental measurements of n_e (CO$_2$) and T_e (Thomson Scattering)

- Line averaged T_e derived from Thomson profile measurement

\[
\langle \beta_e \rangle = \frac{2\mu_0\langle n_e \rangle\langle T_e \rangle}{|B(a)|^2}
\]

\[
N_{GW} = \frac{\langle n_e \rangle}{n_{GW}}
\]

\[
n_{GW} = \frac{I_p}{\pi a^2}
\]
Increases in \(\beta \) are mostly due to an increased contribution from ions.

\[
\langle \beta_e \rangle = \frac{2\mu_0 \langle n_e \rangle \langle T_e \rangle}{|B(a)|^2}
\]

\[
N_{GW} = \frac{\langle n_e \rangle}{n_{GW}}
\]

\[
n_{GW} = \frac{I_p}{\pi a^2}
\]
Ohmically Heated 200 kA PPCD Experiments

- T_e decreases as n_e increases
- $\langle \beta_e \rangle$ constant
- $m=1$ and $m=0$ magnetic activity increases, reaching levels comparable to that observed in standard discharges
Increased Ohmic Heating at High n_e

- Spitzer like scaling of resistivity suggests a factor of 3-4 increase in P_{ohmic}
- Consistent with equilibrium reconstructions ($P_{\text{ohmic}} = \eta J^2$)
Evidence for a Soft β Limit

- Density scan amounts to scan of Ohmic power
 - Spitzer like resistivity ($T_e^{-3/2}$) increases by factor of 3-4

- $\langle \beta_e \rangle$ constant despite $\sim 3x$ increase in P_{Ohmic} (~ 1 to ~ 3 MW)

- Magnetic activity increases by a factor of 4 or more
 - Stochastic transport in the core could provide an explanation

- What is the impact of additional NBI heating power?
200 kA PPCD Experiments with NBI Heating

- 1 MW NBI
- Comparable I_p, n_e
- There is a region where $\langle \beta_e \rangle$ is higher
- Decrease in magnetic activity
NBI Heating Aids in Achieving Higher β

- Possible explanations
 - Beam Heating
 - Mode reduction
 - Enhanced core deposition of pellet material

\[
\langle \beta_e \rangle = \frac{2\mu_0\langle n_e \rangle \langle T_e \rangle}{|B(a)|^2}
\]

\[
N_{GW} = \frac{\langle n_e \rangle}{n_{GW}}
\]

\[
n_{GW} = \frac{I_p}{\pi a^2}
\]
Impact of Fast Ion Population on β

- Thermal β of 26% for discharge with NBI heating

- Estimates for the fast ion $\beta \sim 2\text{-}3\%$ lead to a total β of 28%

\[
\langle \beta_e \rangle = \frac{2\mu_0 \langle n_e \rangle \langle T_e \rangle}{|B(a)|^2}
\]

\[
N_{GW} = \frac{\langle n_e \rangle}{n_{GW}}
\]

\[
n_{GW} = \frac{I_p}{\pi a^2}
\]
Outline

• Motivation and Key Results
• Overview of Experimental Hardware
 – The RFP and MST
 – Pellet injection fueling on MST
• High β Experiments (Pellet fueling + Improved Confinement)
 – Ohmically heated experiments
 – Experiments with NBI heating
• Density Limit Experiments
 – Pellet triggered terminations
 – Impact of reversal
RFP Density Limits

• Greenwald limit for Tokamak and RFP experiments with circular cross sections:

\[n_{GW} = \frac{I_p}{\pi a^2} \]

• Symptoms include:
 – Increase in radiation
 – Edge cooling
 – MHD activity
 – Thermal quench
 – Shrinking of the current channel
 – Disruption (in tokamaks)
Goals of Pellet Triggered Density Limit Experiments

• Use large, fast deuterium pellet to provide a large edge fueling source when it collides with the far wall
 – 2.0 mm pellets used for 200 kA
 – 4.0 mm pellets used up to 600 kA

• Expand our understanding of density limit phenomenology

• RFX-mod model attributes the density limit to the formation of m=0 island, motivating a comparison of reversed and non-reversed discharges
 – F = -0.2 for standard operation
 – F = 0.0 for non-reversed

\[F = \frac{B_\phi(a)}{\langle B_\phi \rangle} \]
Density Limit Termination

- Small changes in pellet mass (and density) impact plasma termination
- Varying degrees of plasma termination observed
- Loss of reversal ($F>0$) for full termination

\begin{align*}
\text{No Pellet} & \quad m = 0.127 \\
& \quad m = 0.154
\end{align*}

\begin{align*}
\langle n_e \rangle \left(10^{19} \text{ m}^{-3}\right) & \\
I_p \text{ (kA)} & \\
F & \\
\text{Time (ms)} &
\end{align*}
Impact of Reversal on the Density Limit

- $m=0.291$
- $F=0.0$
- $m=0.313$
- $F=-0.2$
- $m=0.317$
- $F=-0.3$

Deeper reversal appears more robust to limit

Magnetic activity increases
MST Density Space

- $|1/l_p(dl_p/dt)| > 5 \%/ms$
- Greenwald limit constrains density
- Small change based on reversal parameter

\[n_{GW} (10^{19} \text{ m}^{-3}) \]

\[\langle n_e \rangle (10^{19} \text{ m}^{-3}) \]
Highest Density Achieved So Far

Density limit is greatly exceeded in PPCD
- Core fueled
- Unsustained
- With NBI

![Graph showing density limit exceeded](image-url)
Summary

• Constant $\langle \beta_e \rangle$ scaling with increasing density
 – Ohmic power increases, as does magnetic activity
 – Consistent with soft β limit

• NBI heating achieves a higher $\langle \beta_e \rangle$
 – Including fast ion population, $\beta = 28\%$

• Pellet triggered terminations represent a robust way to trigger density limit plasma terminations up to 600 kA
 – Rapid current decay, loss of reversal and increased magnetic activity
 – Partial termination as density limit is approached

• Varying F has an effect on the apparent density limit
 – Deeper reversal has higher terminating density
 – Edge modes grow despite lack of resonant surface