Motivation

- Current profile (Z) modification improves particle and energy transport in the reversed field pinch (RFP).
- EBW is capable of very localized heating, similar to ECCD/ECH.
- EBW propagation has no cutoffs at high density, unlike

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.

Motivation

- Current profile (Z) modification improves particle and energy transport in the reversed field pinch (RFP).
- EBW is capable of very localized heating, similar to ECCD/ECH.
- EBW propagation has no cutoffs at high density, unlike ECCD/ECH.
- Models (Ram, et al.) calculate mode conversion efficiency of RF to EBW to be as high as 100%.

Electron Bernstein Waves

- From the Hot Plasma Dispersion Relation:
 \[1 - \omega_e^2 = \frac{\omega - k \cdot v_p}{c} \]

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.

Mode Conversion in RFPs

Two Methods for Converting RF to EBW:

1. Launch fast X-mode RF into the left-hand cutoff.
2. Simulate electrons in an equilibrium distribution.
3. Simulate waves to launch to the left-hand cutoff and reflect back to the right-hand cutoff.
4. The "K" scenario uses the slow X-mode.
5. Launch O-mode RF into the Cradle cutoff.
6. Simulate electrons and waves to launch to the right-hand cutoff for efficient coupling to the slow X-mode.