Introduction

Abstract

Fast localized CHERS measurements of ion flow velocity in the core of MST yield:

- Electric field and current profiles are determined.
- Correlated velocity fluctuations on the timescale of ion transit are recorded.
- Spatial structure of the velocity fluctuations is measured.
- The coherence is zero near the magnetic axis.
- Improved modeling of Ohm’s Law in MST is continuing.

Magnetic Modes and Velocity Fluctuations

- Ensemble Method

Coherence of Fluctuating Ion Velocity and Magnetic Modes

Localized poloidal Velocity Fluctuation Profiles in Deuterium Plasmas

Doppler width

- Correlated velocity fluctuations are recorded on the timescale of ion transit.
- Spatial structure of the velocity fluctuations is measured.
- The coherence is zero near the magnetic axis.
- Improved modeling of Ohm’s Law in MST is continuing.

Magnetometer

- A magnetometer provides ion flow velocity and magnetic field direction.
- Spatial structure of the velocity fluctuations is measured.
- The coherence is zero near the magnetic axis.
- Improved modeling of Ohm’s Law in MST is continuing.

Summary

Fast localized CHERS measurements of ion flow velocity in the core of MST yield:

- Electric field and current profiles are determined.
- Correlated velocity fluctuations on the timescale of ion transit are recorded.
- Spatial structure of the velocity fluctuations is measured.
- The coherence is zero near the magnetic axis.
- Improved modeling of Ohm’s Law in MST is continuing.

Localized MHD Dynamo measurement on Axis

The MHD dynamo on the axis of MST has been calculated from the data.

**Coherent impurity velocity fluctuations are recorded on the timescale of ion transit.
- Spatial structure of the velocity fluctuations is measured.
- The coherence is zero near the magnetic axis.
- Improved modeling of Ohm’s Law in MST is continuing.