Correlated temperature and magnetic structures have been seen in MST. A new soft x-ray T_e and tomography diagnostic offers a chance to study the phenomenology and evolution of these structures. Of special interest are plasmas with a dominant magnetic mode structure. The new diagnostic uses the double-foil technique and features:

- individual photo-diodes and fully differential adjustable gain transimpedance amplifiers
- pairs of diodes with shared chordal views to provide direct-brightness T_e profiles in addition to tomographic reconstruction

Background: The Diagnostic

Techniques: Tomographic Emissivity And Electron Temperature

Motivation and Introduction

Results: SXR Electron Temperature and Magnetic Structure

SXR tomographic reconstruction shows an emissive island consistent with the magnetic structure from a dominant $(m,n)=(1,6)$ magnetic mode in a high-current improved confinement discharge.

Impurity Continuum Contribution to the SXR Spectrum

New Evidence of Molybdenum Impurity

Summary And Future Work

- The complete 40-chord SXR provides 2D tomographic emissivity as well as direct-brightness T_e using the double-foil technique
- SXR T_e agrees well with Thomson Scattering in the absence of molybdenum
- δT_e island has been measured with amplitude $\sim12\% T_e(0)$ and correlated with dominant magnetic mode
- FIR and TS measurements can be leveraged with SXR to study Z_{Mo} distribution
- Evidence of Mo impurity contamination from limiter installation in January 2013