Beam energy can be lower sv, d, i
- Next step -
additionally requires total beam velocity
= (m/e) (Ions (1+))
Primary
Secondary
δ
φ
ψ
θ
- K.E. d = K.E.i + e
φ
ψ
φ
ψ

\(r \tan(i) + 2 \)
\[\phi \]
\[\psi \]

- Low
A)
T
\(- \) Toroidal
(\(\phi \) tan(\(\phi \)))
Primary
POLOIDAL MAGNETIC FLUX
P
ψ
δ
φ

\(\psi \rightarrow i \)

- K.E. = \(\psi \)

- Localized to ionization volume
In core,
is
\(\psi \rightarrow i \)

\(i \)

- Safety factor
Current density

- Typically 2 + for 1+ primary
Inject primary beam

- Variation of potential and bead
Primary
Secondary

- Measurement

\(\sim 4 \)
Interpolate between background measurements

\(\psi \rightarrow \phi \)

\(\theta \)

\(\phi \)

- Fluctuations from experiment
MHD Fluctuations

\(\psi \rightarrow \phi \)

\(\theta \)

- Validation of equilibrium and MHD theory
Fluctuation measurements

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Scrape-off signals negligible for traditional HIBP
Low energy - larger ionization cross-section
- Alternate geometry
- Short distance to detector
Change with time - qualitative agreement with expectation
- Measurement of secondary
- Simulation and measurement agree in low-noise experiment

- Permanent magnets to stop plasma particles
Comparison with MSTFit - equilibrium validation
Different equilibria

- MST tearing modes
- Electronic noise
Possible approaches
Array detector

- FUTURE WORK - \(\phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Program in developing \(\phi \)
Program technical
- Retro cost, grateful, single beam diagnosis
- Radiocation by a 100% direct view detector
- Future sensitivity: 30 cm beam line
- Magnetic plasma, on beam plasma
- External plasma, target plasma

- \(\phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Summary

\(\phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Photoemission from detector or housing
- Surface treatment / material properties
- Reduced UV photo-emitted electron noise

- Can have cross-sections

- Measurement linearly increase to \(\sim 10 \) xneider
- Interpolate between background measurements

\(\psi \rightarrow \phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Can have cross-sections

\(\psi \rightarrow \phi \)

\(\theta \)

- Change with time - qualitative agreement with expectation
- Measurement of secondary
- Simulation and measurement agree in low-noise experiment

- Permanent magnets to stop plasma particles
Comparison with MSTFit - equilibrium validation
Different equilibria

- MST tearing modes
- Electronic noise
Possible approaches
Array detector

- FUTURE WORK - \(\phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Program in developing \(\phi \)
Program technical
- Retro cost, grateful, single beam diagnosis
- Radiocation by a 100% direct view detector
- Future sensitivity: 30 cm beam line
- Magnetic plasma, on beam plasma
- External plasma, target plasma

- \(\phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Summary

\(\phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Photoemission from detector or housing
- Surface treatment / material properties
- Reduced UV photo-emitted electron noise

- Can have cross-sections

- Measurement linearly increase to \(\sim 10 \) xneider
- Interpolate between background measurements

\(\psi \rightarrow \phi \)

\(\theta \)

\(\phi \)

\(\psi \rightarrow \phi \)

\(\theta \)

- Can have cross-sections

\(\psi \rightarrow \phi \)

\(\theta \)

- Change with time - qualitative agreement with expectation
- Measurement of secondary
- Simulation and measurement agree in low-noise experiment

- Permanent magnets to stop plasma particles
Comparison with MSTFit - equilibrium validation
Different equilibria

- MST tearing modes
- Electronic noise
Possible approaches
Array detector