The heavy ion beam probe on the Madison symmetric torus (MST)

ABSTRACT

- Singly charged particles are injected into the plasma
- Equilibria are computed using MSTFit which solves the Grad-Shafranov equation
- Accurate magnetic profiles are needed to compute HIBP trajectories

BEAM PROBING BASICS

- Spatially Localized Potential
- Potential Fluctuations
- Density Fluctuations

QUANTITIES COMMONLY MEASURED

- Thomson scattering (electron temperature)
- Beam probing basics
- Continuous measurements

SAMPLE VOLUMES

- Sample volumes corresponding to magnetic equilibria and sample volume widths
- Center Detectors: φ = 19.5 ± 1.1
- Top Detector SVs

DETECTED SECONDARY IONS

- Using a single beamlet, secondary ions are detected and then back scattered as a function of time

SUMMARY

- The electric potential is measured simultaneously by the center and top detectors
- The plasma potential at 10.5 ms is ~ 1.1 kV
- The data correspondents in the temporally evolving sample volumes are correlated

OPERATIONAL AND PLASMA SIGNALS

- Three apertures to the analyzer admit secondary-ions
- The beamlets are deflected by the electric field of the plasma

QUANTITATIVE QUANTITIES EVOLVE CONSIDERABLY DURING IMPROVED CONFINEMENT DISCHARGES

-固定资产和等离子信号
-脉冲和通量信号
-密度扰动信号

THE MAGNETIC EQUILIBRIUM CHANGES AS A FUNCTION OF TIME

- Accurate magnetic profiles are needed to compute HIBP trajectories
- Equilibria are computed using MSTFit which solves the Grad-Shafranov equation
- Data used to construct the flux surface include bootstrap current data, i.e., for a Mio", and additional magnetic field models

THE ELECTRIC POTENTIAL IS POSITIVE

- The electric potential is measured simultaneously by the center and top detectors
- The plasma potential at 10.5 ms is ~ 1.1 kV
- The data correspondents in the temporally evolving sample volumes are correlated

PERIODIC PULSED POLAROID CURRENT DRIVE (PPCD)

- Accurate magnetic profiles are needed to compute HIBP trajectories
- Equilibria are computed using MSTFit which solves the Grad-Shafranov equation
- Data used to construct the flux surface include bootstrap current data, i.e., for a Mio", and additional magnetic field models

The potential at the inner SV is (on average) larger than that at the outer SV

- The plasma potential at 16.5 ms is ~ 1.1 kV
- The electric potential is measured simultaneously by the center and top detectors
- The data correspondents in the temporally evolving sample volumes are correlated

Temporal beam displacements during improved confinement

- A single PPCD discharge is used to illustrate the changes in the magnetic potential, sample volumes, and secondary ion signals

TOolar Plasma Potential During Improved Confinement Discharges

- The plasma potential is measured simultaneously by the center and top detectors
- The plasma potential at 16.5 ms is ~ 1.1 kV
- The data correspondents in the temporally evolving sample volumes are correlated

Potential Inference

- The difference in energy between the detected and injected ions is
- The electric potential is measured simultaneously by the center and top detectors
- The plasma potential at 16.5 ms is ~ 1.1 kV
- The data correspondents in the temporally evolving sample volumes are correlated

Forward looking goals

- Profile of the potential and electric field will be measured using an improved focused ion gun (IFG)
- Enhanced analysis of the plasma potential will be correlated with the selection of data that result in sample volume correlation

Temporal beam displacements during improved confinement

- A single PPCD discharge is used to illustrate the changes in the magnetic potential, sample volumes, and secondary ion signals

Sample volumes and secondary ion signals

- Sample volumes corresponding to magnetic equilibria and sample volume widths
- Center Detectors: φ = 19.5 ± 1.1
- Top Detector SVs

Continuous Measurements

- Secondary ion signals are acquired throughout PPCD
- Signal-to-noise ratios in the sample volume are correlated

Temporal beam displacements during improved confinement

- A single PPCD discharge is used to illustrate the changes in the magnetic potential, sample volumes, and secondary ion signals

FIGURE 9

- Data from 17 and 20 ms originate from proximal sample volumes
- The potential at 16.5 ms is ~ 1.1 kV
- The electric potential is measured simultaneously by the center and top detectors
- The data correspondents in the temporally evolving sample volumes are correlated

The temporal beam displacement in the vicinity of the outer SV

- The electric potential is measured simultaneously by the center and top detectors
- The plasma potential at 16.5 ms is ~ 1.1 kV
- The data correspondents in the temporally evolving sample volumes are correlated

Sample volumes and secondary ion signals

- Sample volumes corresponding to magnetic equilibria and sample volume widths
- Center Detectors: φ = 19.5 ± 1.1
- Top Detector SVs

Continuous Measurements

- Secondary ion signals are acquired throughout PPCD
- Signal-to-noise ratios in the sample volume are correlated

Temporal beam displacements during improved confinement

- A single PPCD discharge is used to illustrate the changes in the magnetic potential, sample volumes, and secondary ion signals

The electric potential is measured simultaneously by the center and top detectors

- The plasma potential at 16.5 ms is ~ 1.1 kV
- The data correspondents in the temporally evolving sample volumes are correlated

Sample volumes and secondary ion signals

- Sample volumes corresponding to magnetic equilibria and sample volume widths
- Center Detectors: φ = 19.5 ± 1.1
- Top Detector SVs