High β, High Density Improved Confinement RFP Plasmas

University of Wisconsin-Madison

F. Bonomo and P. Franz
Consorzio RFX

D.L. Brower, B.H. Deng, W.X. Ding, and T. Yates
University of California at Los Angeles

S.K. Combs and C.R. Foust
Oak Ridge National Laboratory

D. Craig
Wheaton College
RFP confinement limited by current driven tearing modes

- Current-driven tearing modes lead to stochasticity, degrading confinement
By inductively altering the current profile, these fluctuations are reduced.
Confinement was improved but with limitations

- Old results:
 - T_e increases (<2 keV)
 - Higher β (15% compared to 9% in standard discharge)
 - Improved τ_E (10 ms vs 1 ms), but ...

- Limited to relatively low density ($n_e \sim 10^{19} \text{ m}^{-3}$) due excitement of $m=0$ activity during edge-fueling

- Can capture high ion temperatures during improved confinement but T_i doesn’t increase

- Even though beta is increased, stability isn’t challenged
Energy and particle content increased through pellet injection

- Now during improved confinement:
 - Density quadrupled
 - T_e and T_i increase
 - Total β increases to 26%
 - Pressure large enough to challenge stability
Outline

• Introduction
 ‣ The RFP
 ‣ Pellet Injection
• Improved confinement at high density
• Stability at high beta
• Summary
RFP is characterized by high magnetic shear

- Strong shear allows high beta
- Resonant modes are primarily current driven
Pellet Injector

- Deuterium pellets
- \(N_{\text{pellet}} \sim 10^{20}\) particles (\(\sim N_{\text{mst}}\))
- Four barrels with diameters ranging from 1.0 to 2.0 mm
- Formed \textit{in situ}
- Accelerated by mechanical punch and/or high speed gas valve (\(\text{H}_2\) propellant)
Outline

- Introduction
 - The RFP
 - Pellet Injection
- Improved confinement at high density
- Stability at high beta
- Summary
Improved confinement is the result of auxiliary current drive not pellet injection

Thermal equilibration time drops 10-fold
During improved confinement, density profiles are stationary

- No measurement during injection/ablation of pellets
- For similar pellet fueled discharges, $\tau_P = 5-6$ ms
- In non-improved discharges, $\tau_P = 1$ ms
Highest β achieved in high density, improved confinement discharges

<table>
<thead>
<tr>
<th>Case</th>
<th>0.2 MA (no pellets)</th>
<th>0.2 MA + Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{\text{tot}} \propto \langle p \rangle / B^2(a)$ (%)</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>τ_E (ms)</td>
<td>10</td>
<td>>5</td>
</tr>
</tbody>
</table>

- Standard (non-improved) plasmas: $\tau_E \sim 1$ ms, $\beta_{\text{tot}} \leq 9\%$
Highest β achieved in high density, improved confinement discharges

<table>
<thead>
<tr>
<th>Case</th>
<th>0.2 MA (no pellets)</th>
<th>0.2 MA + Pellet</th>
<th>0.5 MA + Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{\text{tot}} \propto \langle p \rangle / B^2(a)$ (%)</td>
<td>15</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>τ_E (ms)</td>
<td>10</td>
<td>>5</td>
<td>7</td>
</tr>
</tbody>
</table>

- Standard (non-improved) plasmas: $\tau_E \sim 1$ ms, $\beta_{\text{tot}} \leq 9\%$
Highest β achieved in high density, improved confinement discharges

<table>
<thead>
<tr>
<th>Case</th>
<th>0.2 MA (no pellets)</th>
<th>0.2 MA + Pellet</th>
<th>0.5 MA + Pellet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{\text{tot}} \propto \langle p \rangle / B^2(a) , (%)$</td>
<td>15</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>$\tau_E , (\text{ms})$</td>
<td>10</td>
<td>>5</td>
<td>7</td>
</tr>
</tbody>
</table>

- Standard (non-improved) plasmas: $\tau_E \sim 1 \, \text{ms}, \beta_{\text{tot}} \leq 9\%$
- $\beta_{\phi} \propto \langle p \rangle / B_{\phi}^2(a) \sim 70\text{-}120\%$
- Titan RFP reactor study assumed $\beta \sim 20\%$
Outline

• Introduction
 ‣ The RFP
 ‣ Pellet Injection
• Improved confinement at high density
• Stability at high beta
• Summary
Mercier criterion likely violated in core

If violated, local interchange modes unstable

\[\nabla p_{\text{critical}} = -\frac{rB_z^2q'^2}{32\pi q^2(1-q^2)} \]

\[\nabla p_{\text{measured}} \]

\[\beta_{\text{tot}} = 26\% \]
At highest betas, calculations predict pressure-driven instabilities.

Mercier criterion violated

\(n = 21 \)
\(n = 24 \)

\(\gamma \tau A \) - \(r/a \)

☐ - \(m = 3 \), resistive, pressure driven (Mercier-like)

(F. Ebrahimi)
At highest betas, calculations predict pressure-driven instabilities

Mercier criterion violated

- $m = 3$, resistive, pressure driven (Mercier-like)
- $m = 1$, resistive, pressure driven

(F. Ebrahimi)
During improved confinement, fluctuations are reduced.

Measured fluctuation spectrum

\(b_n \sqrt{B_\theta(a)} \text{ (\%)} \)

Toroidal mode number, \(n \)

6 8 10 12 14

High \(\beta \) (no pellet)

non-improved confinement

(m=1 magnetic fluctuations)
Smaller decrease in fluctuations could be from increase of pressure drive.

- Drop in τ_E could be related to rise in fluctuations from High β to Higher β.
Although instabilities predicted, no disruptive effects are observed

- Pressure profile measured at 19 ms ($\beta_{\text{tot}} = 26\%$)
- Electron temperature still increasing at 19 ms
Summary

- Previous results
 - Improved energy confinement and higher beta with application of current profile control
 - Generation and confinement of hot thermal ions during improved confinement
Summary

• Previous results
 ‣ Improved energy confinement and higher beta with application of current profile control
 ‣ Generation and confinement of hot thermal ions during improved confinement

• New Results
 ‣ Can achieve higher beta with good confinement ($\beta_{\text{tot}} = 26\%$ - record for improved confinement RFP)
 ‣ Have not reached a disruptive β-limit