Evidence for Magnetic Relaxation in Coaxial Helicity Injection Discharges in the HIT–II Spherical Torus

A. J. Redd
Aerospace & Energetics Research
University of Washington
Seattle, Washington USA

2004 Innovative Confinement Concepts Workshop
University of Wisconsin – Madison
Madison, WI USA
May 25, 2004
HIT Personnel

Faculty and Staff
Thomas R. Jarboe George R. Andexler John A. Rogers
Brian A. Nelson Matthew B. Fishburn Dzung Tran
Roger Raman Susan Griffith
Aaron J. Redd Daniel E. Lotz
Roger J. Smith Dennis Peterson

Graduate Students
William T. Hamp R. "Griff" O’Neill Paul E. Sieck
Valerie A. Izzo

Undergraduates
Rabih Aboul Hosn Ellen Griffin Chris Pihl
Rorm Arestun James Newman Joshua Proctor
Anna Askren Nora Nguyen Aaron Siirila
James Deville Edwin Penniman Jed Smith

Redd, et al “Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Summary

• New Coaxial Helicity Injection (CHI) regime on HIT–II
 – Toroidal plasma current I_p up to 350 kA
 – I_p greater than I_{TF} in some discharges ($\leq 120\%$)

• Global magnetic measurements indicate that measured I_p can be up to 6 times the wrap-up current q_aI_{INJ}

• Internal magnetic measurements show:
 – Buildup of poloidal flux and formation of closed-flux core
 – Relaxation of the current density profile
 – High paramagnetism (up to 40% of vacuum field)

• Current ramp-up rate correlates with the pitch in the magnetic field across the injector
The HIT–II Spherical Torus

HIT–II Engineering Parameters:

- Major Radius \(R = 0.3 \) m
- Minor Radius \(a = 0.2 \) m
- Aspect Ratio \(A = 1.5 \)
- Elongation \(\kappa = 1.75 \)
- 60 mWb Ohmic Flux Available

Active poloidal-flux boundary feedback control system
(response time < 1 ms)

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
The HIT–II Spherical Torus

HIT–II plasma parameters achieved:

<table>
<thead>
<tr>
<th></th>
<th>Ohmic</th>
<th>CHI</th>
<th>CHI Startup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Length</td>
<td>60 ms</td>
<td>25 ms</td>
<td>40 ms</td>
</tr>
<tr>
<td>Peak Current</td>
<td>300 kA</td>
<td>350 kA</td>
<td>300 kA</td>
</tr>
<tr>
<td>Density \bar{n}_e</td>
<td>$\leq 5 \times 10^{19}$ m$^{-3}$</td>
<td>$1-10 \times 10^{19}$ m$^{-3}$</td>
<td>$\leq 5 \times 10^{19}$ m$^{-3}$</td>
</tr>
</tbody>
</table>

HIT diagnostic systems include:

- Internal magnetic and Langmuir probes
- Scannable two-chord FIR interferometer
- 16-channel Ion Doppler Spectrometer, scannable single-chord
- Multi-point Thomson Scattering
- Pair of VUV spectrometers (OVI/OV ratio)
- H-α visible light detectors
- Surface magnetic triple probes
- Bolometer (total radiated power)
- SPRED
- Single-chord \bar{Z}_{eff} measurement

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
CHI-driven I_p up to 353 kA

I_p is total (open- and closed-flux) toroidal plasma current.

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
CHI-driven I_p Above 300 kA

I_p is total (open- and closed-flux) toroidal plasma current.

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT-II ST”
CHI-driven I_p up to 120% of I_{TF}

I_p is total (open- and closed-flux) toroidal plasma current.

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Optimum I_{TF} for CHI-Driven I_p on HIT–II

- Peak plasma current I_p in 307 shots, versus corresponding I_{TF}
- I_p can be maximized for $I_{TF} \approx 500$ kA
- Wall conditions can produce significant shot-to-shot variations, and can limit plasma performance early in a run campaign

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
CHI-Driven I_p Consistent With Taylor Relaxation

- Peak λ_{TOK} in 307 shots, versus post-formation λ_{INJ}

 \[\lambda_{INJ} = \frac{\mu_0 I_{INJ}}{\psi_{INJ}} \quad \text{and} \quad \lambda_{TOK} = \frac{\mu_0 I_p}{\phi_{TF}} \]

- Solid line is $\lambda_{TOK} = \lambda_{INJ}$, dashed line is $\lambda_{TOK} = (1.1)\lambda_{INJ}$

- Generally, $\lambda_{TOK} \leq \lambda_{INJ}$, which agrees with Taylor relaxation

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Discharge #29133: peak I_p was 290 kA, while $I_{TF} \approx 470$ kA, for peak I_p/I_{TF} of 62%.
Peak $I_p/qI_{INJ} \approx 6$, while peak I_p/qI_{BANK} is nearly 2.
Discharge #29988: peak I_p was 210 kA, while $I_{TF} \approx 175$ kA, for peak I_p/I_{TF} of 120%.

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
IDS-Measured T_i up to 300 eV

T_i and \bar{v}_{TOR} measured by single-chord Ion Doppler Spectroscopy, tuned to OV emission (278 nm) on edge chord (impact parameter of 0.44 m). Negative \bar{v}_{TOR} is counter to I_p.

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Internal Magnetic Probe Array

- Each probe “stem” contains 5 or 8 magnetic triple probes, with Boron-Nitride sheaths, stem axes spaced 35 mm apart
- Three probe stems are spaced poloidally and toroidally to enable calculations of the current density J
- Shallow probing (90 mm insertion) was found to be only slightly perturbing for these discharges
- Deeper probing (150 mm insertion) significantly degraded plasma performance, generally reducing peak I_p by 20%

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT-II ST”
Probes Show Poloidal Flux Generation

- Rapid rise in I_p corresponds to the “bubble-burst”, and probe-measured flux is simply the injector flux ψ_{INJ} (6.0 mWb, lower dashed line).
- Slow post-formation rise in I_p corresponds to increasing probe-measured flux.
- Peak measured flux is larger than the total vacuum flux that could be in the confinement region (~11 mWb, upper dashed line).

Vacuum Fluxes for HIT–II CHI Shot #29388

Discharge #29388 flux boundaries are Unbalanced Double-Null Divertor, with:
- Injector flux $\psi_{INJ} = 6.0 \text{ mWb}$
- “Absorber null flux” $\psi_{INJ} = 2.5 \text{ mWb}$
- Vertical flux up to 4.0 mWb at midplane

Internal magnetic probes can have up to 2 mWb of vertical flux behind the tips for 150mm insertion (as shown)

Open flux in confinement region may be up to 11 mWb for 90 mm insertion, assuming ψ_{INJ} is completely drawn out.

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
$J(R)$ is initially hollow. During slow I_p rise, current density migrates inward.

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Low-TF Plasmas Can Be Strongly Paramagnetic

Paramagnetic toroidal fields reach 40% of the vacuum toroidal fields.

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Note the Slow I_p Rise After Formation

- Initial fast rise in I_p is related to bubble-burst, and probing indicates that the current is flowing on open field lines
- Slower post-formation rise in I_p is related to relaxation and the formation of a closed-flux core
- This current rise dI_p/dt correlates with high injector flux, relative to the toroidal field

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Even for High B_T, Increasing ψ_{INJ} Allows Relaxation and Current Build-Up

Shot series with relatively high toroidal field ($I_{TF} \approx 800$ kA)

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Current Ramp-up Rate Correlates with Injector Field-Line Pitch

\[
\text{pitch} \approx \tan^{-1}\left(\frac{2|B_{p-\text{INJ}}|}{|B_T|} \right)
\]

where \(B_{p-\text{INJ}}\) is the poloidal field due to the injector flux and \(B_T\) is the vacuum toroidal field in the injector. Data plotted for 307 discharges.

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT-II ST”
A Minimum Field Pitch May Be Needed for Relaxation to Overcome Resistive Decay

- Relaxation rates vary with field-line geometry:
 Antiparallel field lines reconnect faster than parallel field lines.
 [Y. Ono et al, Phys. Fluids B 5, 3691 (1993)]

- Strong toroidal fields in a Spherical Tokamak
 ⇒ Fields are nearly parallel in the HIT–II injector
 ⇒ Slow magnetic relaxation rate

- Decreasing I_{TF} and/or increasing ψ_{INJ} will increase
 the magnetic field pitch in the injector region

- Experimentally, there is a minimum field pitch needed for
 significant buildup of the toroidal plasma current
 ⇒ Minimum relaxation rate needed to overcome resistive decay

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT–II ST”
Summary

- New HIT–II CHI operating regime has been explored:
 - Toroidal plasma current I_p up to 350 kA
 - I_p greater than I_{TF} in some discharges ($\leq 120\%$)
 - Consistent with Taylor relaxation ($\lambda_{TOK} \leq \lambda_{INJ}$)
 - I_p can be up to 6 times the wrap-up current $q_a I_{INJ}$

- Relatively high temperatures:
 - IDS T_i typically 100-300 eV and MPTS T_e up to 100 eV

- Internal magnetic measurements show:
 - Buildup of poloidal flux and formation of closed-flux core
 - Relaxation of the current density profile
 - Strongly paramagnetic at low TF (up to 40% of vacuum)

- Current ramp-up rate correlates with injector field-line pitch
 - Excess TF inhibits relaxation and current drive

Future Work

• Continue analysis:
 – Discharges with NSTX-like injector geometry
 ★ Do these discharges follow the field-pitch scalings?
 – More detailed probing results:
 ★ Overall scalings?
 ★ $n=1$ mode structure?
 ★ Formation dynamics?
 – Correlate (if possible) other discharge features:
 HXR pulses, slow P_{RAD} oscillations

• EFIT equilibrium reconstructions, with and without fitting to internal probe measurements

• Do corresponding CHI studies on NSTX

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT-II ST”
Magnetic Helicity

Magnetic helicity is a measure of flux linkage. The helicity K is defined by:

$$K \equiv \int (A \cdot B) \, dV = \int \int \oint (A \cdot d\ell) \, (B \cdot dS)$$

For two flux tubes, ϕ_1 and ϕ_2:

$$K = \int \int \oint_1 (A_1 \cdot d\ell_1) \, (B_1 \cdot dS_1) + \int \int \oint_2 (A_2 \cdot d\ell_2) \, (B_2 \cdot dS_2)$$

That is,

$$K = \phi_2 \phi_1 + \phi_1 \phi_2 = 2\phi_1 \phi_2$$

In a tokamak,

$$K \propto I_p I_{TF}$$

Redd, et al. “Evidence for Relaxation in CHI Discharges in the HIT-II ST”
Helicity and CHI Current Drive

Coaxial Helicity Injection (CHI) injects toroidal flux $\dot{\phi}_{\text{TOR}}$ which links the poloidal flux ψ_{inj}

V_{inj} injects $\dot{\phi}_{\text{TOR}}$ which links ψ_{inj}

$\dot{K} = 2V_{\text{inj}}\psi_{\text{inj}}$

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT-II ST”
Model for ST CHI Injector

• As described in:
 Jarboe, *Fusion Technology* 15, 7 (1989), and Nelson *et al.*, *Nuclear Fusion* 34, 1111 (1994)

• Describes a CHI discharge in terms of current flowing on open flux connecting the injector electrodes.

• Injector flux remains in the injector unless the injected current passes a threshold: the bubble-burst current.

• Above this threshold, the injector flux is drawn into the confinement region, and the steady-state injector current will be clamped to the bubble-burst value.

• For large A, the bubble-burst I_{inj} is

\[
I_{\text{inj}} = \frac{\chi^2 \psi_{\text{inj}}^2}{\mu_0^2 d^2 I_{\text{TF}}}
\]

where χ is a dimensionless number, ψ_{inj} is the injector flux, d is the inter-electrode distance, and I_{TF} is the current generating the TF.

• The measured electrode voltage can be affected by rapid changes in the field-line lengths.
Empirical CHI Scaling Studies

- Utilized sets of single-null CHI discharges with variations in injector flux magnitude ψ_{INJ}, toroidal field current I_{TF} and injector geometry (effectively, d).

- Found that, as expected, the injector current scales as
 \[I_{INJ} \propto \psi_{INJ}^2 / I_{TF} \]
 and that open-flux toroidal plasma current scales as
 \[I_p \propto \psi_{INJ} \]
 That is, the open-flux toroidal plasma current has no dependence on I_{TF}

- The injector current did not scale as $1/d^2$.
 Instead, given ψ_{INJ} and I_{TF}, the injector current was minimized for an “NSTX-like” injector flux geometry.
I_{INJ} Scales as ψ_{INJ}^2 / I_{TF}

HIT-like 6.5 mWb, Both guns, Inner puff, $V_{SB} = 94\%$

Injector Current vs TF

Each point is a 1ms interval in a single discharge

$I_{inj} = C / I_{TF}$

Injector Current vs Ψ_{inj}

t = 2.00 ms in all shots, avgd over 1.00 ms

$I_{inj} = C^* \Psi_{inj}^2$

Bottom gun, Inner and Top gun puff

Redd, et al

“Evidence for Relaxation in CHI Discharges in the HIT-II ST”
I_{INJ} Minimized for NSTX-like Injector

Each point represents 1 ms interval in one discharge
10 Rows at 90%, Both Guns, Both Puffs

Redd, et al
“Evidence for Relaxation in CHI Discharges in the HIT–II ST”